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Abstract
Water is precious natural resource on earth but rapid industrialization and effluent 

discharge from domestic, agriculture and municipal wastes is polluting water 
continuously. Membrane technology provide solution to water related problems and 
used as an attractive tool for removal of pollutants from water. Different types of 
polymeric membranes are used for wastewater treatment but certain drawbacks are 
related to polymeric membranes such as hydrophobicity, fouling and low mechanical 
strength. Incorporation of nanoparticle in polymeric membranes enhances the 
membrane properties. Recently nanocomposite membranes are developed that 
increased hydrophilicity, improved mechanical properties and enhanced rejection 
efficiencies of polymeric membranes. Among different types of polymeric membranes, 
polyvinylidene fluoride nanocomposites membranes are widely used for removing 
various contaminants from wastewater. It is reported that polyvinylidene fluoride based 
nanocomposite membranes possess good separation efficiency for the removal of 
different pollutants. In this review several polyvinylidene fluoride membranes 
incorporated with metal oxide such as titanium dioxide, aluminium oxide, silicon oxide, 
zinc oxide, carbon nanotubes and graphene oxide based nanocomposite membranes 
have been discussed for wastewater treatment. The current study objective is to 
summarize the applications of polyvinylidene fluoride based nanocomposite 
membranes for the removal of different pollutants from wastewater.

Keywords: Polyvinylidene fluoride; Nanocomposites; Hydrophilicity; Modification; 
Blending; Waste water.

Introduction
Water is basic necessity of life, precious natural source but due to increased 

population and urbanization its availability becomes limited. Numerous contaminants 
produced from various industries and domestic discharges pollute the water 
continuously. Different industries such as agriculture, paper, textile and live stock 
generate billion gallons of wastewater which continuously degrade the water quality 
[1]. About 70% of the earth is covered with water. Approximately 97% is covered by sea 
water which is useless for human consumption due to high salt content, 2% saved in 
the form of glaciers, ice caps and only 1% available as fresh water. Access to fresh water 
is one of the major challenges of twenty first century, according to one of the estimation 
of WHO (World Health Organization) approximately 1.1 billion people lack access to 
clean water [2]. Water shortage has become more severe due to exploitation of water 
resources such as industrial, domestic, agriculture and municipal waste effluents 
discharge in water bodies.
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Water pollution cause severe threat to human, plants and 
animals; pollutants discharged from industries contain salt, 
surfactant and heavy metals which affect the entire environment. 
Large number of disease provoke by drinking polluted water such 
as cholera, diphtheria, hepatitis and malaria etc. To overcome the 
water related problems there is need to access new water sources 
or protect existing sources through water treatment techniques. 
Different conventional methods such as adsorption, advance 
oxidation process, gravity separation, skimming, coagulation, 
centrifugation and membrane separation have been applied for 
water treatment. Membrane technology is considered one of the 
emerging technologies for wastewater treatments [3] because it is 
cost effective, simply to operate, possess high separation efficiency 
and minimal waste production. Other techniques are found to be 
expensive, difficult to operate and produce toxic waste.

Membrane is a semi permeable barrier which allows wanted 
materials to pass through it and retain the unwanted material on 
the surface [4]. Membrane technology is an effective technique 
for wastewater treatment due to easy operation and high 
productivity without addition of chemical additives. Processes 
that are being used in conventional treatment plants such as 
secondary sedimentation, settling tanks flocculation and granular 
filtration have been replaced by membrane system [5].

Different types of membranes used for wastewater filtration 
on the basis of their pore size and rejection mechanismi-
emicrofiltration (MF), ultrafiltration (UF), nanofiltration (NF) and 
reverse osmosis (RO) [6]. Microfiltration and ultrafiltration are 
known as low pressure membranes and nanofiltration/reverse 
osmosis commonly called high pressure membranes due to 
small pore size. Different types of membranes, along with pore 
size are given in table 1.

Table 1. Types of membranes on the basis of pore size.
Membranes Pore size Removal
Microfiltration 1-0.1 µm Bacteria, proteins
Ultrafiltration 0.1-0.01 µm Viruses, collides
Nanofiltration 0.1- 0.001 µm Divalent ions
Reverse osmosis <0.001 µm Monovalent ions

Membrane has been classified into two major categories 
i-e inorganic and polymeric membranes. Inorganic membranes 
are made up of ceramics such as titanium oxide (TiO2), 
aluminium oxide (Al2O3), zirconium oxide (ZrO2) and silicon 
oxide (SiO2) [7]. Ceramic membranes are widely used in water 
treatment applications because they possess high thermal 
and mechanical strength. Ceramic membranes can be used 
under extreme pH and high temperature conditions but high 
cost of ceramic membranes makes them less attractive.

Now a day’s polymeric membranes has got much 
attention for water treatment due to low cost, high flexibility 
and membrane forming properties. Polymeric membranes 
consist of organic polymers such as Polysulfones (PSF), 
Polyether sulfone (PES), Polyacrylonitrile (PAN), Polyvinyl 
alcohol (PVA), Polypropylene (PP), Poly tetrafluroethylene 
(PTFE) and Polyvinylidene fluoride (PVDF) [8]. Researchers 
paid much attention on polyvinylidene fluoride polymer due 
to its unique properties i-e inert to chemicals and oxidants, 
membrane forming properties, good mechanical strength 
and high thermal stability. Owing to these characteristic 

features polyvinylidene fluoride membranes have been 
commonly applied for water treatment, recovery of biofuel, 
gas separation, pollutants removal from water and separator 
for lithium ion batteries [9]. PVDF is considering as excellent 
membrane material because easily dissolves in organic 
solvent and develops porous membrane structure by simple 
phase inversion method. However applications of PVDF 
membrane are restricted by major problem such as fouling in 
wastewater treatment.

Membrane fouling is accumulation of macromolecules, 
collides, microorganism and salts on the surface of membrane 
or inside the pores of membranes. Fouling is caused by 
various factors such as adsorption of organic molecule, 
particulate deposition and microbial adhesion on the 
membrane surface. Decline in permeation flux and reduction 
in membrane life is due to fouling and ultimately leads to 
failure of membrane performance [10]. Polyvinylidene fluoride 
membranes are hydrophobic in nature and are easily affected 
by fouling. Different methods have been adopted to overcome 
fouling problems related to polyvinylidene fluoride membrane 
(Figure 1). Pretreatment techniques which reduce fouling are 
physicaland chemical cleaning of membrane.

Figure 1. Fouling of membranes.

Physical cleaning performed by backwashing of 
membranes while chemical cleaning achieved by using 
various chemicals (acids, caustic soda etc). Chemical cleaning 
of membrane damage the membrane material so it is not an 
effective method to improve fouling therefore modification 
of PVDF is necessary [11].

This review provides an overview of the different modification 
methods for polyvinylidene fluoride based membranes for 
improving hydrophilicity. This review also provides an insight on 
various polyvinylidene fluoride metal oxide based nanocomposite 
membranes for wastewater treatment. Different carbon based 
polyvinylidene fluoride nanocomposite membranes such as 
carbon nanotubes based composite membranes and graphene 
based nanocomposite membrane for wastewater treatment 
have been also discussed in detail.

Modification of PVDF Membranes
As discussed previously, hydrophobic nature of PVDF 

reduces the applications of polyvinylidene fluoride membranes 
in separation and purification of wastewater. Various methods 
have been applied for modification of PVDF membrane to 
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overcome fouling (i) bulk modification blending of polymer 
with hydrophilic additives, (ii) surface modification (coating of 
PVDF with hydrophilic polymer). Hydrophilic modification of 
PVDF can be attained during preparation process.

Bulk modification of PVDF membrane
Bulk modifications of PVDF can be attained during 

preparation process. Bulk modifications can be done in two ways 
(i) polymer blending (polymer addition) and (ii) incorporation of 
nanomaterial.

Polymer blending: One approach to reduce fouling and 
increase the hydrophilicity of polyvinylidene fluoride membrane 
is blending of PVDF with hydrophilic polymer. Different polymers 
are used to increase the hydrophilicity of PVDF membrane such 
as polyacrylonitrile (PAN) [12], polyvinyl alcohol (PVA) [13], 
polyethylene glycol (PEG) [14] and polyvinyl pyrrolidene (PVP) 
etc., [15]. Among them polyvinyl alcohol is well known polymer 
for fabricating membranes with good hydrophilic properties 
[16]. PVA blend with polyvinylidene fluoride stronger 
intermolecular interaction develops among two polymer chains 
of PVDF and PVA which improve the hydrophilicity [17].

Poly (vinyl pyrrolidone) PVP is widely used hydrophilic 
polymer for preparing PVDF membranes to regulate pore size 
and prevent fouling due to its hydrophilic nature [18]. PVP 
promotes the formation of large finger like macrovoids during 
immersion in the coagulation bath [19]. By increasing the 
concentration, significant increase in surface porosity and pore 
size of the membrane thus increases the permeation flux [20].

Another well known pore forming agent is polyethylene 
glycol which favors microvoid formation during the fabrication 
and impart hydrophilic character to the polyvinylidene 
fluoride membrane. Blending of PEG with PVDF adjust the 
thermodynamics and kinetics of casting solution and control 
the morphology of membrane and reduce fouling.

Poor compatibility of polymer with hydrophobic PVDF 
matrix is one of the predominantly issue in polymer blending 
process. PVDF/PVA blends, revealed incompatibility [13], 
during the phase separation technique. So, some researchers 
have looked into the use of amphiphilic copolymer as modifier 
to solve this issue.

Amphiphilic modifier possesses both hydrophilic and 
hydrophobic properties [21]. During phase inversion process the 
hydrophobic chains ensure the compatibility with host PVDF 
polymer, while the hydrophilic chains reinforce onto the 
membrane pore surface [22]. For the fabrication of hydrophilic 
PVDF membranes commonly used amphiphilic copolymers are 
PS-b-PEGMA (polystyrene–polyethylene glycol methacrylate 
[10], P(MMA- r-POEM) polymethyl methacrylate [23], and PVC-
g-P(PEGMA) [24].

Liu et al. fabricated copolymer consist of polyvinylidene 
fluoride backbone and polyacrylomorpholine (PACMO) side 
chain membrane by radical polymerization technique, the 
resultant membranes showed better resistance to fouling and 
excellent hydrophilicity [25]. Table 2 represents the 
modification of PVDF membranes with different additives 
[26-32,60-66].

Table 2. Modification of PVDF membranes with different additives.

PVDF wt% Additive wt % Modification 
method

Decrease in 
contact angle Reference

PVDF (20%) PVP (7.5%) Blending 80° to78° [59]
PVDF (16%) PEG (5%) Surface grafting 115° to 73° [60]
PVDF (19%) PMMA (3.2%) Blending 80° to 68° [61]
PVDF (13%) PEGMA Surface grafting 80° to 60° [62]
PVDF (10%) HPE-MPEG (3%) Blending 92° to 49° [63]
PVDF (18%) SiO2 (3%) Blending 82° to 53° [64]
PVDF TiO2 (2%) Blending 72° to 68° [65]

Incorporation of nanomaterials: The inorganic nanomaterials 
are promising modifier apart from hydrophilic polymer to 
minimize the fouling. The incorporation of nano material into 
polymer matrix has become an interesting approach for 
reducing fouling of PVDF membranes [33,34]. Blending of 
PVDF with nanomaterial, alter the intrinsic features of the 
composites. Various nanomaterials such as carbon nanotubes, 
graphene, alumina, titanium oxide and other nano scale 
materials are used for enhancement of hydrophilicity, 
antifouling and separation properties of PVDF membrane 
(Figure 2). The introduction of inorganic nano material 
influences the membrane performance in following ways:

�� Nanomaterials improve the fouling and the hydrophilicity 
of membranes [35].

�� Amplify the mass transfer during the prevaporation 
technique [36].

�� Enhance selectivity and solute rejection efficiency of 
membrane [37].

�� Improve the mechanical and thermal properties [38,39].

Figure 2. Incorporation of nanoparticle with polymer.

Surface modification of PVDF membrane
Surface modification is effective strategy to increase 

hydrophilicity of PVDF membranes. Purpose of surface 
modification is formation of hydrophilic layer on membrane 
surface which prevent the contact between membrane surface 
and pollutants thus diminishing fouling. Surface modification 
categories as physical modification and chemical modification.

In physical modification hydrophilic modifier bound to 
PVDF membrane by physical interaction not by covalent 
bonding, the chemical composition of the membranes 
remains unchanged. Physical modification of polyvinylidene 
fluoride membrane can be attained by the membrane surface 
directly coated with hydrophilic polymer or membrane is 
coated by solution of chemically active monomers. Xi et al. 
demonstrated study on physical modification of hydrophobic 
polyvinylidene fluoride membrane by coating with dopamine. 
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The dopamine firmly attachs to membrane surface and 
contact angle of dopamine coated membrane reduce 
remarkably as compared to pristine membrane. Decrease in 
contact angle suggested improved hydrophilicity due to 
addition of hydroxyl, carboxyl and amino groups at membrane 
surface [40].

Chanachai and his cowokers researched on coating of 
hydrophobic PVDF membrane with chitosan by dip coating 
method. Coating of hydrophilic chitosan polymer increases 
the hydrophilicity of membrane by decreasing the repulsive 
forces between hydrophobic PVDF and water molecules. 
Diffusion of water through hydrophilic chitosan layer 
enhanced water flux resulted in increased hydrophilicity [41].

In chemical modification polyvinylidene fluoride 
membrane modified through covalent bonding interaction 
PVDF chains firstly activated by chemical reaction or high 
energy radiation such as plasma graft, UV photo irradiation 
and electron beam radiations.

Yang et al. fabricated hydrophilic polyvinylidene fluoride 
membrane by electron beam induced graft polymerization. 
Fourier transform infrared spectroscopy verified the successful 
attachment of hydrophilic monomers on membrane surface by 
polymerization. Contact angle decrease from 93° to 35° indicated 
the improved hydrophilicity of modified polyvinylidene fluoride 
membranes [42].

Han et al. modified hydrophobic PVDF membranes 
through defluorination and sulfonation. SEM analysis 
confirmed that chemical modification did not adversely affect 
the membrane structure and pore size. Incorporation of 
hydrophilic sulfonic acid moieties increased the surface 
charge and wettability results in increased membrane 
hydrophilicity and water flux [43]. Chemical modification 
usually requires costly chemicals and special instruments 
which limited their practical application.

Mixed Matrix Membranes
Mixed matrix membranes are modified polymeric 

membranes with nano material dispersed in their matrix. 
During the synthesis of membrane, nano filler is incorporated 
into polymer so called mixed matrix or nanocomposite 
membranes. Nanocomposite membranes have received 
worldwide attention in gas separation, sensor application, 
direct methanol fuel cell and water treatment industry. 
Nanocomposite membranes able to face all challenges of 
polymeric membranes like fouling and its applications in 
waste water treatment.

Incorporation of nanoparticle into water filtration 
membranes change the membrane properties such as 
wastewater rejection capacity, increase water permeability, 
enhance flux and antifouling behavior [44]. Nanoparticles 
provide better hydrophilicity, pore channels and large surface 
area to polyvinylidene fluoride matrix [45]. Different metal 
oxide nanoparticles such as titanium oxide, aluminum oxide, 
silicon oxide and zinc oxide are incorporated into PVDF 
membranes for wastewater treatment.

PVDF Metal Oxide based Nanocomposite
Titanium dioxide based nanocomposite membrane

TiO2 is considered as a promising material for development 
of nanocomposite ultrafiltration membrane due to its 
hydrophilic character. It is used as filler with different polymers 
like polyvinylidene fluoride, cellulose acetate, polyether 
sulfone and polypropylene. Different phases of TiO2 play very 
important role in the solute transport of polymeric membranes 
[46]. PVDF titanium dioxide based nanocomposite not only 
improves the hydrophilicity, but also increase water flux and 
reduce the fouling issue of polyvinylidene fluoride [35].

Yuliwati et al. developed PVDF titanium nanocomposite 
membranes by phase inversion method and used for the filtration 
of oily wastewater. Addition of 1.95% TiO2 resulted in higher 
hydrophilicity, small pore size and porosity. This is due to the 
reason that TiO2 attract the water molecules inside the composite 
membrane, enhancing flux and rejection capacity [47].

Teow et al. developed polyvinylidene fluoride titania 
mixed matrix membrane by phase inversion and colloidal 
precipitation method. The performance of the fabricated 
ultrafiltration membranes was evaluated by measuring the 
membrane permeate flux and humic acid rejection. Results 
demonstrated that improvement of membrane flux and 
rejection of humic acid reached to 98.44% due to pore 
enlargement and enhanced hydrophilicity resulted from close 
polymer chain packing by titania nanoparticles [48].

Ong et al. synthesized series of PVDF-PVP-TiO2 composite 
membrane by dry jet wet spinning method and used for the 
treatment of oily wastewater. Membranes properties were 
characterized in terms of pure water flux and oil rejection. When 
2 wt% of TiO2 was added in PVDF maximum flux of 70.48% and 
99.7% of oil rejection was attained by using 250 ppm oily 
solution. This was due to increased hydrophilicity and pore size 
upon the addition of highly hydrophilic inorganic additive [49].

Babak et al. fabricated thin film PVDF-PVA nanocomposite 
membranes by immersion precipitation method incorporated 
with carboxylated titania nanoparticles to improve the 
separation performance of membranes. Separation of various 
solutes divalent salt, organic solute and bovine serum albumin 
was determined. Solute rejection and antifouling properties 
of the membranes were improved due to carboxylated titinia 
nanoparticles which provide good dispersion and adhesion 
with the polymer [50]. Different types of titinia nanocomposites 
[48,49,32,51,52] for wastewater treatment are given in table 3.

Table 3. TiO2 nanocomposite for wastewater treatment.

Nanocomposites Preparation 
Method

Water flux
L/m-2h Applications %Rejection Ref

PVDF/TiO2 Phase inversion 392.81 Degradation of 
methyl blue 99% [32]

PVDF/PVP/TiO2 Phase inversion 70.48 Removal of oils 99.7% [49]

PVDF/TiO2
Collidol 

precipitation 45.36 Humic acid 
removal 98.4% [48]

PVDF/TiO2 Solution casting 135 Removal of 
reactive black ˃99% [51]

PVDF/PAA/TiO2
In situ 

polymerization 22 Wastewater 
treatment 87% [52]
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Aluminium oxide based nanocomposite membranes
Aluminum oxide nanoparticles are highly reactive, non 

toxic resistant to chemicals and possess large surface area. 
Aluminium oxide is inorganic metal oxide material form 
nanocomposite membrane with organic polyvinylidene 
fluoride membrane increased the hydrophilicity and suppress 
the fouling of polyvinylidene fluoride membrane.

Zheng et al. blended aluminium silicate clay particles with 
polyvinylidene fluoride for the removal of direct dyes from 
wastewater. Novel nanocomposite membranes results 
showed that dye rejection ratio exceed to eighty six percent 
for direct red, eighty five percent for direct yellow and ninety 
three percent for direct blue which was attributed to 
electrostatic repulsion between membrane surface and dyes. 
Antifouling results for direct dyes demonstrated that 
nanocomposite membranes showed outstanding antifouling 
behavior.

Li et al. synthesized PVDF aluminium oxide based 
nanocomposite membranes and used for the separation 
of bovine serum albumin. Nanoparticles could directly 
bond to PVDF chains due to the formation of conjugated 
double bond through acid catalyzed grafting reactions. 
Hydrophilic aluminium oxide improves the surface 
hydrophilicity, bovine serum albumin rejection efficiency 
and antifouling performance of the nanocomposite 
membranes [53]. Yan et al. studied PVDF ultrafiltration 
membrane blended with aluminium oxide nanoparticles in 
the presence of hexadisodium phosphate as the dispersant 
and polyvinyl pyrrolidene as pore former [54] for the treatment 
of oily wastewater. Addition of aluminium oxide nanoparticles 
into PVDF membrane enhances permeation flux and 
separation efficiency due to the hydrophilic inorganic 
nanoparticle.

Silicon oxide based nanocomposite membranes
Silica nanoparticles are recognized as inorganic additive 

in the fabrication of organic membranes due to its mild 
reactivity, mechanical strength, nontoxic nature, chemicaly 
and thermaly stable applied in various fields including 
catalysis, ceramics and chromatography. Now a day’s 
applications extended to separation process, nanoporous 
silica provide inner channels for water molecules and enhance 
water flux also offer attractive possibilities for the preparation 
of ultrafiltration nanocomposite membrane.

Xiao et al. fabricated modified PVDF membrane by 
blending nanosilica, PVA and styrene maleic anhydride. 
Membranes properties were studied for the filtration of dyes 
i-e congo red and reactive black. Results showed that the 
modified silicon dioxide polyvinylidene fluoride based 
nanocomposite possess high rejection capacity for both dyes 
as compared to neat polyvinylidene fluoride membrane due 
to addition of additives [55].

Sun et al. developed PVDF/PVA/SiO2 nanocomposite 
membrane ultrafiltration membrane by non solvent induces 
phase separation and studied membrane properties i-e pure 
water flux, percentage rejection and antifouling. The results 

demonstrated that hydrophilicity, water flux and rejection of 
bovine serum albumin increased due to hydroxyl groups of 
polyvinyl alcohol and silica particles [56].

Simmeng et al. synthesized polyvinylidene fluoride silica 
phosphorylated nanocomposite membrane by phase 
inversion process and used for the separation of oily 
wastewater. Results showed that the permeate flux of the 
composite membrane was better as compared to the neat 
membrane. Highest oil rejection was attained as compared to 
the neat membrane which indicated that the pore diameter of 
PVDF membrane increased due to phosphorylated silica 
particles [57].

Similar studies were carried out by Wang and found that 
oil rejection efficiency increased from 86.0% to 91.2% after 
blending polyvinylidene fluoride with silica nanoparticle.

Zinc oxide based nanocomposite membranes
Zinc oxide is multifunctional inorganic nanoparticle and 

attracted attention due to high surface area as compared to 
other inorganic nanoparticles. Zinc oxide used as nanofiller 
with various polymers (cellulose acetate, polyether sulfone, 
polyvinylidene fluoride) in the fabrication of different 
nanocomposite membranes. Incorporation of zinc oxide in 
polymeric membranes enhances properties of polymer such 
as hydrophilicity, fouling resistance and chemical and 
mechanical properties.

Liang et al. synthesized novel ZnO blended PVDF 
membranes for the treatment of synthetic wastewater (humic 
acid, bovine serum albumin, sodium azide and sodium 
alginate. Filtration experiments revealed zinc oxide 
incorporated nanocomposite membranes showed better 
antifouling and high separation efficiency for wastewater due 
to increased hydrophilicity [58].

Xia et al. developed hybrid PVDF/ZnO membranes by 
physical blending method. Performance of hybrid membranes 
was determined through measurement of water flux, contact 
angle measurement and removal of copper ions. Results 
demonstrated higher membrane performance for heavy 
metal separation due to deposition of zinc oxide nanoparticle 
on the surface of membrane [59]. Polyvinylidene fluoride 
metal oxide nanocomposites [53,57,59,60,61] are given in 
table 4.

Table 4. PVDF metal oxide based nanocomposite for  
wastewater treatment
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PVDF Zinc oxide 452.1 COD removal 82° to 70° 10 mg/L 70.12% [61]

PVDF Silicon oxide 252 Oily wastewater 68° to 43° 45 mg/L 93.82% [57]

PVDF Zinc oxide 465 Copper ion 
removal 62° to 50° 25 mL 83.3% [59]

PVDF Aluminium 
oxide 134 Bovine serum 

albumin 91° to 79° 1.0 g/L 93.4% [53]

PVDF Zinc oxide 56 Humic acid 
removal 56° to 79° 50mg/L 83% [60]
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Carbon based Nanocomposite 
Membranes

Carbon based nanomaterials have characteristic property 
of sp2 hybridized carbon bonds with outstanding physical and 
chemical properties and surface adsorption properties at the 
nanoscale. Fullerenes, graphene, carbon Nanotubes and 
nanodiamonds are different allotropic form of carbon. Carbon 
based nanomaterials attracted worldwide attention in 
different fields like contaminants removal (organic 
compounds, dyes, pesticides) environmental remediation and 
drug delivery system. In water and wastewater treatment 
carbon nanomaterials used as adsorbent, photocatalyst and 
disinfection.

Carbon nanotubes based composite membranes
Carbon nanotubes are also called bucky tubes one 

dimensional nanomaterials classified as single-walled 
(SWCNTs) or multi-walled (MWCNTs) on the basis of carbon 
layer. Carbon nanotubes exhibit large surface area, rich hollow 
and layered structure which helps in removal of organic 
contaminants and heavy metals. Carbon nanotubes could be 
incorporated into polymers to develop multifunctional 
membranes with improves selectivity, permeability and 
fouling resistance.

Musthafa et al. fabricated dual layer polyvinylidene 
fluoride carbon nanotubes blended membranes. Carbon 
nanotubes was efficiently immobilized on the surface of 
membrane and used for the removal of methylene blue. The 
composite membrane exhibited high methylene blue removal 
efficiency due to more open pore structure and presence of 
different functional groups on the surface of blend membrane 
[60].

PVDF/MWCNTs nanocomposite membrane was 
synthesized by Ma et al. In order to reduce the fouling through 
poly (amine-ester) functionalized multiwalled carbon 
nanotubes, poly amine ester groups facilitated the dispersion 
of multiwall carbon nanotubes in the casting solvent. The 
water permeability/recovery and fouling properties of 
nanocomposite membranes depend on the weight percent 
and dispersed state of MWCNTs in the polymer matrix.

Shan and Murthy et al. carried the preparation of amino-
functionalized-multi-walled CNTs-polysulfone composite 
membranes and used for heavy metal removal Cr(VI) and 
Cd(II). The membranes displayed maximum removals about 
94.2% and 78.2%, respectively which was just 9% and 10% 
respectively with pristine membranes. The percentage 
rejection of heavy metal for these composite was found to 
increase with increasing the loading of multi walled carbon 
nanotubes [62].

Ma et al. synthesized polyvinylidene ultrafiltration 
membranes with pristine and oxidized multi-walled carbon 
nanotubes. Results demonstrated that contact angle decrease 
water flux increased and bovine serum albumin rejection 
increased for oxidized carbon nanotubes. With addition of 2 
wt% of oxidized carbon Nanotubes increased the viscosity of 

solution this also prevents the exchange between dimethyl 
acetamide and water leads to slow down the precipitation of 
membrane. As a result porous membrane was formed and 
rejection of bovine serum albumin increased due to presence 
of hydrophilic oxygen containing groups on the surface of 
membrane.

Graphene oxide based nanocomposite membranes
Graphene oxide is sp2 oxidized derivative of graphene 

exhibits hydrophilic nature [63]. The presence of oxygen 
functional groups hydroxyl, carbonyl, epoxy and carboxyl 
groups at basal plane and edges impart hydrophilicity to 
graphene oxide. Graphene oxide used with different polymers 
such as polyamide, polysulfone, cellulose ester, and 
polyvinylidene fluoride improve thermal and mechanical 
properties of polymeric membranes [64]. Graphene oxide 
nanocomposite membranes attracted great attention for 
water treatment application including removal of toxic ions, 
water desalination and organic molecules in polluted water 
[65].

Zhao et al. incorporated 2 wt% graphene oxide in 
polyvinylidene fluoride ultrafiltration rejection. Increased in 
pure water flux was attributed to high hydrophilicity due to 
the presence of abundant oxygen containing functional 
groups on the GO surface. These functional groups attracted 
water molecules inside the membrane matrix and facilitated 
passage of water molecules through the membranes. 
Rejection of BSA increases due to the formation of hydrated 
layer on the membrane surface and the slow change of flux 
ratio indicated better antifouling properties due to the 
introduction of hydrophilic grapheme oxide in the composite 
[66].

Zhang et al. [67] cross-linked graphene oxide with 
isophoronediisocyanate (IPDI), and then coated on 
polyvinylidene fluoride ultrafiltration membrane by surface 
modification. The tendency of dye removal exceeded to 96% 
and heavy metal ions rejection increased to 40-70% as 
compared to neat PVDF membranes without the addition of 
graphene oxide.

Synergistic effects of GO and PVP on ultrafiltration 
polyvinylidene fluoride membrane performance investigated 
by Chang et al. for the treatment of bovine serum albumin. 
The results showed that the membrane hydrophilicity, 
rejection efficiency and the antifouling performance was 
improved by the addition of graphene and polyvinyl 
pyrrolidone. It is reported that this improvement is due to the 
formation of hydrogen bonds between PVP and GO [68].

Zhenya et al. carried out study for hazardous dye rejection 
rhodamine B by introducing graphene oxide and lithium 
chloride into PVDF membrane. Because of graphene and 
lithium chloride the decolorization rate and flux recovery ratio 
of nanohybrid membrane exceed to 80% and 78% respectively. 
This is due to presence of many carboxyl and hydroxyl groups 
on the surface of nanohybrid facilitating hydrogen bonding 
with dye molecule [11]. Table 5 represents the carbon based 
nanocomposite [11,63,65,68-74] for water treatment.
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Table 5. Carbon based nanocomposites membranes for wastewater treatment.
Polymer Nanofiller Pressure Application %Rejection Reference
Polyvinylidene fluoride Graphene oxide 100 kPa Rhodamine B removal 80% [11]
Polyvinylidene fluoride Graphene oxide 0.1 MPa BSA rejection 85% [68]
Polyvinylidene fluoride Carbon nanotubes 0.1 bar Methylene blue removal 92% [63]
Polysulfone Carbon nanotubes 0.4 MPa Chromium (VI) 94.2% [65]
Polysulfone Graphene oxide 2 bar Methylene blue removal 84.2% [70]
Polyamide Graphene oxide 225 psi Salt removal 98% [71]
Cellulose acetate Graphene oxide ……. Organic matter …… [72]
Polypropylene Carbon nano tube ……. Salt removal ……. [73]
Polyethersulfone Graphene oxide 0.4MPa Direct red ……. [74]

Conclusion
Polyvinylidene fluoride is most commonly used membrane 

material for wastewater treatment and has gained significant 
consideration in recent years due to its outstanding anti-
oxidation activity, high thermal stability, remarkably organic 
selectivity, excellent chemical resistance and membrane 
forming ability. Polyvinylidene fluoride membranes have 
been abundantly used in water treatment for purification 
purposes for example textile wastewater treatment, reuse of 
municipal wastewater, and heavy metals removal etc.

Major problem in water treatment applications is fouling 
due to its hydrophobicity, which can be improved by various 
modification methods. Incorporation of nanomaterial in PVDF 
change the membrane properties like hydrophilicity, porosity, 
charge density, thermal and mechanical stability that provide 
unique properties to membrane. Literature study showed that 
polyvinylidene fluoride based nanocomposite membranes are 
highly efficient in removing various pollutants both organic as 
well as heavy metals from wastewater. This review mainly 
focuses on use of polyvinylidene fluoride-metal oxide based 
nanocomposite i-e PVDF-TiO2, PVDF-Al2O3, PVDF-SiO2, PVDF-
ZnO and carbon based nanocomposite PVDF-CNT and PVDF-
GO for wastewater treatment. It gives new direction to design 
the next generation of polymeric membranes with high 
separation capability and anti fouling properties.
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