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Abstract
In this Editorial, I describe a novel potential adjuvant for cancer vaccines designated 

imuno, an emulsion of low molecular weight microbial chondroitin sulfate, phosphatidylcholine 
and vitamin D3. The molecules constituting imuno are arranged in cell membrane-like 
structures under the form of a homogeneous, single-phospholipid bilayer that resembles 
protocellular structures with chondroitin sulfate mimicking the role of nucleic acids. 
Phosphatidylcholine and chondroitin sulfate, arranged in protocellular-like structures, have 
to be interpreted as a universal delivery system with the potential of maximizing the effects 
of vaccination as we proposed for HIV DNA vaccines; such a molecular arrangement proves 
essential for the functioning of imuno as a novel type of cancer vaccine adjuvant.
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Cancer vaccines
Until recently, vaccines were considered almost exclusively for prevention and cure 

of infectious diseases based on the century-old observation that attenuated microbes 
and/or their antigens, stimulate the immune system so to develop adaptive immunity 
against a specific pathogen. This concept is based on the assumption that a pathogen 
is recognized by immune cells as “non-self” and, therefore, as a target to be eliminated 
through one or more of the arms of the immune system. In the context of oncology, the 
task of the immune system is definitely more difficult since cancer cells have the ability 
to “conceal” their identity and escape immune surveillance through a variety of 
strategies. When cancer arises as a pathologic entity it is precisely because cancer cells 
have been successful in avoiding immune surveillance.

The idea of vaccination against cancer is an old one that, in modern times, dates 
back to the nineteenth century and Dr. William B. Coley with his toxin, often referred to 
as Coley’s vaccine. It is worth mentioning, however, that in the times of Coley, knowledge 
of oncology and immunology were rudimentary at best, and Coley’s vaccine was 
interpreted more as a form of bacterial therapy rather than a form of what today is 
called cancer immunotherapy. Coley had not been the first to observe an association 
between bacterial infection and cancer regression; even without counting reports from 
ancient Egypt and Pharaoh Imhotep in 2,600 BC, in the thirteenth century AD, Peregrine 
Laziosi, later canonized as the Saint Patron of cancer patients, described spontaneous 
regression of a large tumor in his leg after the tumor became severely infected and, 
since the eighteenth century, intentional infection of cancers was considered standard 
of care treatment that yielded significant successes up to complete regression of 
advanced cancers [1,2]. With today’s knowledge of the functioning of the immune 
system, we may interpret those results as a brutal stimulation of the immune system 
that, associated with the unavoidable hyperthermia due to the severity of the infection, 
led to cancer cell apoptosis and, eventually, to cancer regression. 

Cancer vaccines of the twenty-first century are obviously more targeted and less 
risky than those heroic attempts of the pre-antibiotic era as they try to “educate” the 
immune system to recognize cancer cells as non-self so to restore immune surveillance 
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and efficiently eliminate abnormally proliferating cells. 
Modern vaccines against cancer have an unquestionable 
appeal over treatments such as surgery, radiation therapy or 
chemotherapy, since they are perceived as much less invasive 
and, at least in theory, they could protect against a specific 
type of cancer for life just like a vaccination against microbial 
infections does. Based on these premises, many potential 
vaccines against specific cancers have been developed, and 
the phase II/III clinical trials are underway to test their clinical 
efficacy [3]. At variance with the heroic attempts of the past, 
today’s cancer vaccines are based on antigens derived from 
self-molecules rather than on infectious pathogens; however, 
just like in the past, they have been used primarily in advanced, 
metastatic, cancer with the target of stimulating the immune 
system so as to slow down the progression of the disease. In 
other words, until recently, cancer vaccines and, more broadly, 
cancer immunotherapy, was relegated to those cases where 
standard of care had failed or was not applicable; it is only in 
recent years that cancer vaccines and immunotherapy are 
being interpreted as means to target early cancer and 
premalignant lesions with the objective of preventing the 
onset of malignancies [4]. Therefore, two types of cancer 
vaccines are being developed: therapeutic vaccines that are 
used in patients who already have cancer, and preventive 
vaccines aimed at preventing cancer from occurring.

An interesting cancer vaccine that has been licensed for 
use in clinical practice is Sipuleucel-T (commercial designation, 
Provenge), a vaccine intended for the treatment of 
asymptomatic/minimally symptomatic metastatic castration-
resistant prostate cancer. This vaccine ultimately relies upon 
activation of macrophages; to this end, peripheral blood 
mononuclear cells that are taken from the patient and 
incubated with a fusion protein consisting of recombinant 
prostate acid phosphatase and granulocyte-macrophage 
colony-stimulating factor (GM-CSF) [5]. It is worth noticing 
that we were the first to demonstrate that a low molecular 
weight acid phosphatase has phosphotyrosine phosphatase 
activity, thus counteracting aberrant signaling in cancer cells 
and inhibiting cancer cell proliferation [6,7]. Likewise, we were 
among the first to highlight the role of macrophage colony 
stimulating factors in human cancer [8], and to propose 
macrophage-based immunotherapy in advanced cancer [9]. It 
is based on this decade-old, proven expertise in the field of 
cancer cell signaling and therapy that we developed imuno, 
a novel tool that has the potential to boost the efficacy of 
existing cancer vaccines as well as to stimulate the innate 
immune system in the context of cancer immunotherapy.

Adjuvants for cancer vaccines
Cancer vaccines, just like other vaccines, benefit from the 

addition of adjuvants, compounds that optimize the immune 
response by increasing the production of antibodies and 
offering a longer-lasting coverage, thus reducing the amount 
of antigen that needs to be injected. In addition to increasing 
antibody production, adjuvants are used to potentiate cell-
mediated immune responses, for example, by activating 
T-lymphocytes. Among different types of compounds, 

Freund’s adjuvant merits special consideration. It was first 
described in 1942 when Jules Freund and Katherine 
McDermott published a study describing the immunological 
response following injection of a “lanolin-like substance and 
killed tubercle bacilli suspended in oil” in guinea pigs [10]. 
There exist two types of Freund’s adjuvant, the complete and 
the incomplete form. The former consists of inactivated and 
dried microbes (typically Mycobacterium tuberculosis) in an 
emulsion of water and mineral oil whereas the incomplete 
form lacks the microbial component. The mechanism of 
action of Freund’s adjuvant involves stimulation of cell-
mediated immunity as well as activation of innate immune 
responses, thus boosting the efficacy of vaccination. It is 
worth noticing, however, that use of the original formulation 
of Freund’s adjuvant in humans is forbidden because of 
toxicity, mainly due to the presence of mineral oil.

In the context of cancer, adjuvants assume particular 
relevance because most cancer vaccines are poorly 
immunogenic per se and cancer patients frequently have 
deficient immune responses, thus making the presence of an 
adjuvant a mandatory requirement [11]. Although the original 
formulation of Freund is unsuitable for human use, 
nevertheless the main tenet of Freund’s adjuvant, that is the 
presence of an emulsion of water and oil, is maintained; for 
example, Authors from Cambridge (UK) reported in 2012 that 
a combination of adjuvants based on emulsions of lipophilic 
compounds elicited immunological responses comparable to 
Freund’s adjuvant [12]. Even though many adjuvants are 
based on emulsions of water and oil, or water and lipophilic 
compounds, also other combinations of molecules are 
efficient cancer vaccine adjuvants. In 2013 Authors from China 
and the USA demonstrated that polysaccharides may prove 
useful as cancer vaccine adjuvants with particular reference to 
advanced, metastatic cancer [13]. Therefore, based on our 
previous expertise in the field of polysaccharide research in 
experimental oncology, when we designed imuno we 
combined the two most effective approaches in the field of 
adjuvants developing an emulsion of water and a lipophilic 
molecule complexed with a polysaccharide endowed with 
immune stimulating properties.

Design of a novel tool for adjuvant immunotherapy
The design of imuno takes inspiration from our long-

standing expertise in experimental oncology as well as from 
the pioneering work of Dr. Prudden who demonstrated, since 
1985, that a polysaccharide, the glycosaminoglycan 
chondroitin sulfate, is the powerful immune stimulating agent 
responsible for the anticancer effects of cartilage formulations 
[14]. Chondroitin sulfate is composed of alternate units of 
glucuronic acid and N-acetyl-galactosamine, the latter being 
the active site of the Gc protein-derived Macrophage 
Activating Factor (GcMAF) [15], a macrophage activating 
factor endowed with significant adjuvant activity [16]. In 2013, 
based on molecular modeling, we hypothesized that the 
immune stimulating properties of GcMAF were due to its 
association with lipophilic compounds, namely oleic acid, and 
vitamin D3, thus reinforcing the hypothesis that the physical 
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features of an emulsion were involved in the biological and 
clinical effects described for GcMAF [17]. In 2016, in the 
attempt to solve a number of controversies surrounding 
GcMAF and its role in immunotherapy, we hypothesized that 
chondroitin sulfate was indeed responsible for the biological 
and clinical effects attributed to GcMAF [18]. Based on these 
observations, we designed an emulsion of chondroitin sulfate, 
oleic acid and vitamin D3 designated Rerum®, that proved 
useful in a variety of conditions where potentiation of the 
immune system is sought after [19].

Although both GcMAF associated with oleic acid, and 
Rerum® have shown remarkable effects in immunotherapy [9-
20], the extractive nature of their main components has 
prevented their widespread use. Thus, GcMAF is synthesized 
from a blood protein, whereas, until recently, chondroitin 
sulfate was extracted from animal cartilage and it is well 
known that compounds extracted from complex matrices 
suffer from less than optimal homogeneity, purity, and 
consistency. Because of this, in the design of imuno we took 
advantage of the recent development of a novel form of 
chondroitin sulfate that derives from microbial fermentation 
and shows a degree of purity and homogeneity far superior 
to that of the animal-derived counterpart [21]. Microbial 
chondroitin sulfate shows a homogeneous sulfation profile 
that is much closer to that of human chondroitin sulfate and 
features a homogeneous low molecular weight whereas 
animal-derived chondroitin sulfate is a heterogeneous 
mixture of species with different molecular weights. This 
feature is of utmost importance as it has been widely 
demonstrated that low molecular weight glycosaminoglycans 
are much more effective than their high molecular weight 
counterparts as it is the case, for example, of heparin [22]. 
Consistent with this concept, Volpi et al. recently reported 
that low molecular weight microbial chondroitin sulfate shows 
far superior bio-availability and pharmacokinetics with a 
significantly greater clinical efficacy as compared with the 
animal-derived counterpart. Therefore, imuno is constituted 
by an emulsion of low molecular weight microbial chondroitin 
sulfate complexed with phosphatidylcholine and vitamin D3. 
At variance with Rerum®, phosphatidylcholine rather than 
oleic acid was chosen to provide the lipophilic moiety of the 
supramolecular assembly. The rationale for this choice lays in 
our decade-old observation that circulating 
glycosaminoglycans are associated with phosphatidylcholine 
and this association may be responsible for a number of 
biological effects [23]. In this way, the molecules constituting 
imuno are arranged in cell membrane-like structures under 
the form of a homogeneous, single-phospholipid bilayer that 
resembles protocellular structures with chondroitin sulfate 
mimicking the role of nucleic acids [24]. In a broader context, 
phosphatidylcholine and chondroitin sulfate, arranged in 
protocellular-like structures, have to be interpreted as a 
universal delivery system with the potential of maximizing the 
effects of vaccination as we proposed for HIV DNA vaccines 
[25]; such a molecular arrangement proves essential for the 
functioning of imuno as a novel type of cancer vaccine 
adjuvant.

As a matter of fact, despite the use of adjuvants in billions of 
doses of human and animal vaccines with undisputable efficacy, 
their mechanism of action at the molecular level remains the 
“immunologist’s little dirty secret” [26]; many different 
mechanism have been proposed to solve the “secret” consisting 
in the fact that exposure to a foreign antigen per se is insufficient 
to mount an efficient immune response and rather non-specific 
substances such as mineral oil, killed mycobacteria, or even 
metals - aluminum - have to be added in order to activate T- and 
B-lymphocytes. The question is central to understanding the 
functioning of the immune system; thus, lymphocytes are able to 
recognize non-self antigens without the need of any adjuvant, 
but, in the absence of this, the immune response to vaccination 
is rather inefficient as if these crude extracts were essential for 
initiating the body’s immune response. This being the case, even 
the noun “adjuvant”, from Latin adiuvare (to help) seems 
inadequate as it appears that rather than merely “helping” 
adjuvants are indeed essential. Among the different mechanisms 
proposed to elucidate the role of adjuvants at the molecular 
level, we wish to highlight activation and maturation of antigen 
presenting cells (APC) that migrate to the draining lymph nodes 
and activation of inflammasomes [27]. These mechanisms bear 
clinical relevance in the context of cancer vaccines where 
adjuvants similar in principle to imuno are considered. Thus, it 
can be hypothesized that the most efficient way to take 
advantage of activated lymphocytes and cells of the innate arm 
of the immune system, could be intradermal injection of the 
cancer vaccine together with its adjuvant in an anatomical 
location where the flow of lymph would carry the activated 
immune cells toward the malignancy.

It is worth noticing that intradermal delivery of vaccines is 
considered one of the best ways to achieve immunization as it 
has been demonstrated that it generates a higher response with 
lower dose when associated with a suitable adjuvant [28]. In 
addition, it has been highlighted that intradermal vaccines 
containing adjuvants similar in principle to imuno offer the 
advantage that they could be self-administered and sent through 
the mail since there is no need for long needles or technical 
expertise to achieve effective immunization. According to 
Authors from USA, Israel and Canada in reference to an 
intradermal flu vaccine containing a new adjuvant based on 
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine - a type of 
phosphatidylcholine - in the event of a pandemic outbreak, 
intradermal self-administration of vaccines sent by mail “could 
alleviate the congregation of patients in health centers and thus 
reduce the potential of these centers to enhance the spread of 
lethal infection” [28]. In the case of the study quoted above, 
1,2-Dipalmitoyl-sn-glycero-3-phosphocholine was conjugated 
with a Toll-like receptor 4 (TLR4) ligand. In the case of imuno, 
phosphatidylcholine is complexed with low molecular weight 
microbial chondroitin sulfate and vitamin D3 and it is known that 
vitamin D3 regulates human dendritic cell response synergistically 
with Toll-like receptor agonists [29]. Because of this similarity, it 
can be hypothesized that imuno may be compounded in 
intradermal preparations that can be sent through the mail and 
self-administered in analogy with the strategy proposed by 
Carter et al. [28].
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Conclusions
It is foreseeable that cancer vaccines will become an 

essential tool in the oncologist’s armamentarium and, in 
analogy with traditional vaccines designed to prevent 
infectious diseases, effective adjuvants will be required to 
maximize the effects of vaccination. With the design of 
imuno for the first time, we have in a single supramolecular 
structure the features of Freund’s-like water and oil emulsions 
and those of polysaccharide-based adjuvants. In addition, 
imuno can be considered a delivery system analogous to 
that proposed for HIV DNA vaccines [25], thus performing 
several functions, all aimed at optimizing immunization. 
Considering its role as a delivery system, we propose that 
imuno may also be considered in the context of mucosal 
immunization that is a promising novel strategy for fighting 
pathogens and cancer at mucosal sites [30].
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