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Abstract
White Dwarf stars and Neutron stars both undergo catastrophic collapse under 

extreme conditions. The empirical fact to be explained is the sudden collapse of these 
stars when a certain combination of conditions involving pressure, spacetime curvature, 
and possibly temperature occurs. The account usually given is based on loss of 
degeneracy pressure, but does not explain the mechanism. In this paper, the proposed 
explanation of the fact is that under these conditions, fermions (electrons) transform 
into bosons, thereby ceasing to be governed by the Pauli Exclusion Principle, which 
accounts for degeneracy pressure. With no degeneracy pressure, atoms collapse and 
the White Dwarf then collapses into a Neutron star. A similar collapse can occur in the 
case of Neutron stars, when neutrons transform into bosons. The implication is that the 
electrons now form a new state of matter, one that is not normally seen and cannot be 
created in earthbound laboratories. This research combines well-known results from 
Quantum Field Theory and General Relativity, proposing a new, slightly modified version 
of the usual solutions to the Dirac equations to show how electrons or neutrons can 
transform from fermions to bosons under extreme conditions, to explain the degeneracy 
pressure failure. It is then used to explain the origin of the extreme magnetic fields of 
magnetars, and to give a possible identification of a superpartner for electrons.

Keywords: Dirac equation, Black Hole, White Dwarf, boson, fermion, Neutron Star, 
Supersymmetry.

1.	 Introduction
The collapse of White Dwarf stars to Neutron stars, and the further collapse of 

Neutron stars to Black Holes, poses several interesting and important questions about 
the behavior of matter under extreme conditions. A White Dwarf reaches a terminal size 
wherein it is prevented from collapsing by electron degeneracy pressure arising from 
the Pauli Exclusion Principle (Lequeux, 2013). This principle acts by preventing fermions 
from occupying arbitrary energy levels in dense configurations, such as solid state 
matter. But the principle only applies to fermions, not bosons. The defining characteristic 
of fermions is non-integral spin: for electrons, it is ½. Likewise, the defining characteristic 
of bosons is integral spin; for photons, it is 1. Can we understand transition of White 
Dwarfs sustained by electron degeneracy to neutron stars as a transition from fermions 
to bosons? This suggests that if we can modify the Dirac equation solutions so that 
under normal circumstances they are essentially unchanged, but under extreme 
circumstances the particles represented change from fermions to bosons, we can explain 
the collapse of White Dwarfs and Neutron stars. This requires the spin of the particles to 
become the same and to become an integer value.
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2.	Modification of Dirac Equation 
Solutions
The Dirac Equation takes the formshown in equation (1) 

(Schwichtenberg, 2020; Klauber, 2013):
0i mm

m∂ γ Ψ − Ψ = 	 (1)

The base Dirac equation solutions for particles are given by 
equations (2) and (3):
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The object of the solution modifications is to determine a 
new version of these solutions that would give boson behavior 
to fermions under extreme spacetime curvature, i.e., account for 
electron and neutron behavior in stars. We do this by making an 
appropriate adjustment to each solution term such that under 
normal conditions (little spacetime curvature) there is no 
measurable or observable change from current solutions. But 
under extreme spacetime curvature, there is a significant nearly 
step function type of change. Of course, the modified solutions 
must continue to satisfy the original Dirac equation. The new 
solutions, where k = some function associated with spacetime 
curvature, for spin up particles is given by equation (4):
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And corresponding equation for spin down given by equation (5):
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For 0k → , this reduces to the original Dirac solutions, as 
expected. For k →∞ both of these solutions reduce to 
equation (6):
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In this case spin up and spin down solutions become the 
same. The only way that this can happen is if spin is 0. Integer 
spins are associated with bosons, which show that you can 
get boson behavior from particles described by the Dirac 
equations without modifying them. We will denote the boson 
form of electrons as be− . For anti-particles (positrons in the 
case of electrons), the new solutions take the form of 
equations (7) and (8):
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It is easily shown that these reduce to the original anti-particle 
form when 0k → , and as in the case of the particle solutions, 
the two approach the same value when k →∞ as shown in 
equation (9):
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For positrons, we will denote the boson form as be+

. 
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3.	 Some Issues Regarding this Type of 
Transition
Fermions such as electrons that transform into bosons 

would represent a new form of matter. This brings up some 
issues that could be significant in connection with such 
transformations, and thus in connection with empirical 
observations. Below some topics are sketched that will require 
further elucidation beyond the scope of this paper. 

a)	 Lepton number conservation. Leptons are usually 
characterized as elementary particles of spin 1⁄2 that 
are not subject to the strong force. It is not spin that 
defines leptons, however, but the fact that they are 
not subject to the strong force; hadrons are also spin 
½ but are subject to the strong force. The two main 
classes of leptons are charged leptons, including the 
electron, muon, and tauon, and neutral leptons, i.e., 
neutrinos. Conservation of lepton number is a 
principle of quantum mechanics and quantum field 
theory (Schwartz, 2014), though violated in some 
grand unified theories (Klauber, 2024). There are two 
possibilities: (1) lepton number is not conserved 
under the conditions where fermions convert to 
bosons because we are dealing with a new state of 
matter; or (2) lepton number is conserved but the 
definition must be expanded to include particles of 
integer spin (transformed fermions) that are not 
subject to the strong force. That is, transformed 
fermions still retain their lepton identity, except that 
they have integer spin. This is the most likely 
explanation, since the important characteristic of 
leptons is their relationship to the four forces.

b)	 Energy release upon collapse. When White Dwarfs or 
Neutron stars collapse, a large amount of energy is 
released. There are two sources of potential energy 
involved (1). When electron degeneracy pressure 
fails, the Pauli Exclusion Principle (responsible for the 
size of atoms) no longer functions, and according to 
the theory advanced in the article, this means that 
electrons no longer need to inhabit orbits far from 
the nucleus, so large amounts of electrical potential 
energy would be freed (2). The physical collapse of 
the White Dwarf to the much smaller size of the 
Neutron star due to the collapse of atoms would 
release large amounts of gravitational potential 
energy.

c)	 Electron interaction with protons. With electrons no 
longer subject to the Pauli principle, it is not clear 
how they would interact with protons. Free neutron 
decay, 0

en p e+ −→ + + ν , which in some cases also 
involves a gamma ray (photon) emission as well, 
suggests that the reverse process whereby an electron 
and proton combine to form a neutron would not be 
favored energetically. It is also not clear whether or 
how such a reverse process could occur if the electron 
now has integer spin. If the electrons cannot combine 

with protons due to integer spin, there might be 
some type of electron “gas” or “flood” around 
protons, very roughly analogous to what happens in 
metals and some semiconductors, though without 
the energy level quantization. 

d)	 Quantum statistics. These statistics (Bose-Einstein 
and Fermi-Dirac) are descriptive, not prescriptive, of 
the aggregate behavior of particles under quantum 
mechanics. That is, spin determines the statistics, not 
the other way around. Consequently, under extreme 
conditions, if particle spin can change, the statistics 
would automatically change as well. The fundamental 
nature of the connection between spin and statistics, 
and what happens if a particle transitions from half 
integer to integer spin, is an important subject.

e)	 Conservation of angular momentum. Obviously, any 
change of spin involves a change of angular 
momentum, since the angular momentum of a 
particle is given in units of spin and Planck’s constant. 
Angular momentum is always conserved, so if spin 
goes from ½ to 0, there are two possibilities: (1) If 
there is significant imbalance in +1/2 and -1/2 spin 
particles, the excess could go to the angular 
momentum of the Neutron star or to flowing currents 
within the star. (2) More likely, the number of +1/2 
and -1/2 spin particles is approximately the same, so 
the net change in angular momentum would be near 
zero, with any excess distributed among currents in 
the star or the star’s angular momentum. It would be 
most valuable to measure the angular momentum of 
an electron in the new state, and its gyromagnetic 
ratio ge, but given the requirements for transforming 
an electron, that may not be possible in earthbound 
laboratories.

4.	Functional Form of Expression 
Governing Transition from Fermion 
to Boson
For this theory to be viable, it is necessary to find an 

expression for the exponent k which involves factors 
associated with the extreme conditions in White Dwarfs and 
Neutron Stars. These factors include mass, density, degeneracy 
pressure, and spacetime curvature. According to General 
Relativity, spacetime is curved by both mass and pressure. 
The contribution due to pressure—the degeneracy pressure—
is much stronger than that due to mass. For spacetime 
curvature, it is reasonable to assume that some relationship 
involving the Riemann Curvature Tensor is involved. The 
resulting expression for 1/ ke  must approximate a step function, 
so that the transition from fermion to boson occurs very 
rapidly as conditions approach those of a White Dwarf or 
Neutron Star.

Unfortunately we do not have a good understanding of 
the physics of White Dwarfs or Neutron Stars, which would 
allow us to determine expressions for the spacetime curvature. 
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The theory advanced here requires that k be a scalar function 
(rank 0 tensor), but the Riemann Curvature Tensor and the 
Ricci Tensor are both higher-order tensors. Since we do not 
know well the physics in the Neutron Star, we consider the 
Schwarzschild solution to Einstein’s Field Equations. The 
Schwarzschild solution applies strictly in the case of a static, 
spherically symmetrical field near a massive spherical object. 
This is not exactly the description of the interior of a Neutron 
Star, but it is at least computationally tractable, and can be 
used in the case of simple Black Holes (Collier, 2014; Moore, 
2013). If, as appears to be the case, that the Neutron Star is 
much denser toward the center, the Schwarzschild metric may 
be adequate as a first approximation to estimate spacetime 
curvature. We will use this assumption and see how far we can 
get with it.

The Schwarzschild metric tensor takes the form of equation 
(10):
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The Ricci curvature scaler R= 0 for this metric, so it cannot 
be used. However, the Tensor Norm (a rank 0 tensor) can be 
employed as a measure of the curvature. For any tensor, the 
norm is defined as the square root of the tensor contracted 
with itself in all indices (Shoshany, 2021). For the Schwarzschild 
metric, the Norm squared is defined and calculated as shown 
in equation (11):

2 222
4 6
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mν mν= = = 	 (11)

The corresponding norm is given in equation (12):
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Vc
π
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assuming a sphere so that the r term can be expressed in 
terms of volume V.

In this discussion, we will use standard mks units rather 
than natural units because the mks units give an immediate 
indication of the values of the forces involved. After much 
experimentation, the following formula looks to be fairly 
accurate for the constant that determines transition to boson 
behavior, equation (13):

49

2
0

2.5 101000expk
V PD NS

 ⋅
= − ⋅ ⋅ 

	 (13)

where V0= initial volume of star (before any collapse has 
started), PD = Degeneracy Pressure, and NS = Schwarzschild 
Norm. The last two are functions of the volume of the star as 
it is collapsing. This formula works for both collapse to 
Neutron Star from White Dwarf (electrons-> bosons) and 

collapse of Neutron Star to Black Hole (protons/neutrons-> 
bosons). In both cases, degeneracy pressure is overcome by 
gravity, i.e., spacetime curvature, as measured by the 
Schwarzschild Norm. The advantage of the formula is that it 
does not require separate constants for the different cases of 
White Dwarf and Neutron Star, and also that it utilizes both 
degeneracy pressure and a General Relativity measure of 
spacetime curvature.

Use of the Schwarzschild Norm requires assumptions 
about the solution to the Einstein Field Equations for the 
particular case. As noted, we do not have a good understanding 
of the physics of the stars involved, so as a first approximation 
we will assume that the Schwarzschild solution is applicable 
and use the Schwarzschild Norm to estimate spacetime 
curvature inside the collapsing star. The Neutron Star is 
rotating but is not yet a Black Hole, so we can for approximation 
purposes prescind from the Kerr metric.

The formula gives following graphs (Figure 1 and Figure 2):

Figure 1. Electron Degeneracy Case (electrons->bosons)

Figure 2. Proton/Neutron Degeneracy Case: Baryons-> Bosons
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These graphs show that the same formula can explain at 
least to first order the very rapid collapse of White Dwarfs to 
Neutron Stars, and the collapse of Neutron Stars to Black 
Holes. 

5.	 Application to Magnetic Field in 
Magnetars
In this section we consider an application of the theory 

that electrons can become bosons. The goal is not to create a 
new theory of Neutron star structure or a new equation of 
state (Moskvitch, 2020). Current theories postulate that under 
the extreme conditions of Neutron stars, charged particles 
can form a superfluid [refs], to generate the required magnetic 
fields. There are some problems with this theory, due to the 
fact that the temperatures inside a neutron star far exceed 
those usually associated with superfluidity as we currently 
understand it, which requires much lower temperature than 
that assumed for neutron stars, about 1011 for newly formed 
stars, and 106 for older ones (Lattimer, 2015). The purpose 
here is not to solve the problem of the state of neutron star 
cores, and whether they are or contain superfluids, but to 
show that the conversion of fermions into bosons, resulting in 
a new state of matter, can achieve flows consistent with the 
observed large magnetic fields of magnetars, owing to the 
extremely high density of electrons now possible in such 
flows. Due to our lack of knowledge of the structure and 
physics of neutron stars, here we wish to show only that with 
some reasonable assumptions, the hypothesis of boson 
behavior of electrons can yield magnetic field strengths in the 
approximate range of those observed or inferred from 
observations. 

The problem is how the extremely strong magnetic fields 
of Magnetars are generated. Obviously, Neutron Stars cannot 
be composed entirely of neutrons. The kind of magnetic field 
strengths observed, 109 – 1011 T (McGill, 2020), require large 
flowing currents, some type of dynamo (Moskvitch, 2020). In 
the present case, we will utilize the hypothesis advanced here 
that the electrons become bosons, and see if such particles 
can explain the magnetic field. We can assume that the 
modified electron is still subject to the same forces as before: 
gravity, E&M, weak. One question is whether all of these 
electrons will combine with protons to form neutrons, or 
whether they will remain separate but still interact. Likely the 
latter since some sort of circulating current must be 
responsible for the extremely strong magnetic fields in 
neutron stars. Differences in field strength could be the result 
of different numbers of electrons not combining with protons. 
But to get circulating currents, it must be the case that some 
electrons (and possibly protons) form a fluid, possibly with 
electrons rotating one way and protons another. Here we 
shall consider electrons only. The electrons can now easily 
form a fluid since they are bosons, but the protons cannot—
they are still subject to the Pauli Principle. The question, 
therefore, is how such fluids could work, since the electrons 
are mutually repulsive, as are the protons. The answer seems 
to be that the extreme pressure inside a Neutron Star can 

force electrons close together because it can overcome the 
repulsive electrical force, and there is no Pauli principle forcing 
them into different energy levels. In this way, extremely high 
densities of electrons can be achieved. Theory predicts that 
collapse would radiate from the center, where spacetime 
curvature (dependent on both mass and pressure) is 
maximum, out to the edges, as they are pulled in.

It is possible to estimate the magnetic field of a magnetar 
by making a few assumptions, and using the fact that 
electrons, now as bosons, can be put closely together without 
energy level issues stemming from the Pauli Exclusion 
Principle. We use the following, in addition to standard 
constant values:

•	 Mn = 1.68 x 10-27 kg (mass of neutron)
•	 Re = 2.80 x 10-15 m (radius of electron)
•	 m0 = 1.2664 x 10-6 N/A2 (assumed permittivity)
•	 Rns = 1.00 x 104 m (radius of Neutron Star)
•	 MNS = 8.36 x 1024 kg (mass of Neutron Star, taken as 

1.4 x mass of Sun)
•	 VNS = 4.19 x 1012 m3 (volume of Neutron Star)
•	 B = 1.00 x 1011 T (mag field of Neutron Star)
•	 Ecs = 2.50 x 10-29 m2 (cross section of electron)

We shall assume that the magnetic field is generated by 
electrons rotating around some central axis passing through 
the core, and that the axis may or may not be aligned with the 
axis of rotation. Initially it is assumed to be fairly close. This 
will be modelled as a solenoid for purposes of calculating the 
magnetic field, with “virtual wires” of electrons spaced closely 
(electron centers approximately 1 electron radius apart). 
While electrons are considered to be point particles, they are 
surrounded by virtual particles, so they have an approximate 
finite radius. The electrons are kept apart by electrostatic 
repulsion only, not by any effect of the Pauli Exclusion 
Principle, since they are now acting as bosons. That repulsive 
force is given by Coulomb’s Law, equation (14):

2

2e
kqF
r

= 	 (14)

For two electrons with centers separated by 2x electron 
radiusr, the value of this force is calculated in equation (15):
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−
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To see that gravity cannot overcome this force, we can 
calculate the gravitational force on an electron at the surface 
of a Neutron Star, given as equation (16):

( )
11 30 31
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22 4
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In a Neutron Star, the star is held up only through the 
degeneracy pressure of neutrons, which are still acting like 
fermions; electrons have been overwhelmed and are acting 
like bosons. We will assume that the degeneracy pressure can 
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be estimated using the formula for Fermionic fluids. The 
degeneracy pressure that acts on particles, including electrons, 
in the context of stars, is given by equation (17) [Branson, 
(2013)]:

5/33 2 2 2/3 2 5/3
5/33 (3 ) ( / )

15 5D
e

N N VP V
m M

−π π ⋅ ⋅ = = π 
  	 (17)

where N/V = number of atoms/unit volume, and Me is 
mass of the electron. In this case, N is calculated from the 
mass of the Neutron Star, and V from the radius. Note that 
this formula is different than that in #417, which is probably in 
error since this formula has the correct units. The number of 
particles is calculated as equation (18):

30
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MN
M −

⋅
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Then N/V is calculated using the volume of the Neutron 
Star in equation (19):
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The degeneracy pressure inside the Neutron Star can 
then be calculated as equation (20):
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Units check with this calculation—kg/(m s2) = Pa = N/m2. 
The force on an electron would then be given by equation 
(21):

36 29 8
. 5.05 10 2.5 10 1.26 10

De P D CSF P E −= ⋅ = ⋅ ⋅ ⋅ = ⋅  N	 (21)

This is far greater than the repulsive electrostatic force 
between two electrons. To estimate the magnetic field 
strength, we will assume a solenoid-type of current, with 
electrons flowing through “virtual wires” around a core 
consisting of protons. Given the radius of the Neutron Star, 
and assuming that the virtual wires of the solenoid are spaced 
at about 1 electron diameter apart, over the length of the 
solenoid = diameter of the Neutron Star, we would have, for 
the number n of turns, equation (22):

4
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We assume that the electrons are densely packed. 
Assuming that we want a magnetic field of 1011 T, we can 
estimate the solenoid current as equation (23):
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Electrons per second Ne needed to generate this current 
in the solenoid, with the given number of “turns”, is calculated 
as equation (24):
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The average velocity of the electrons needed to generate 
the current Ve is equation (25):

17 152 1.39 10 2.8 10 779e e eV N R −= ⋅ ⋅ = ⋅ ⋅ ⋅ =  m/s	 (25)

This is comfortably less than the speed of light. We do not 
know the radius of the solenoid, but we can construct a table 
that relates the radius of the solenoid to its rotation frequency 
(assumed to be the rotation frequency of the Neutron Star), 
and the number of electrons/virtual wire and the total number 
of electrons (Table 1):

radius of 
solenoid (m) f (rot/sec) # electrons/wire Total # electrons

25 4.959 5.61E+16 2.00E+35
50 2.479 1.12E+17 4.01E+35
100 1.240 2.24E+17 8.01E+35
250 0.496 5.61E+17 2.00E+36
500 0.248 1.12E+18 4.01E+36
1000 0.124 2.24E+18 8.01E+36

Table 1. Solenoid calculations for hypothetical model of neutron 
star magnetic field strength

Since the rotation speed of Magnetars is known to be 1 to 
10 times per second, this would, according to the above table, 
correspond to a solenoid radius of about 100-1000 m. 

It is well-known that the rotation axis of a Magnetar need 
not be the same as the axis of its magnetic field. This explains 
the “lighthouse effect” that allows us to “see” these objects. If 
we let the angle between the rotation axis and the magnetic 
field be θ, the rotation of the star would still cause rotation of 
the electrons in the solenoid, at the same frequency, under 
the assumption that the rotation of the electrons is coupled 
to the rotation of the star. It can be shown that the effective 
radius reff of the solenoid decreases as cosθ, becoming zero 
when the axes are orthogonal (q=90o). Specifically,  reff = rsol 
cosθ, where rsol is the normal radius of the solenoid. If the 
rotation frequency is the same, and the number of electrons 
is the same, but the effective radius decreases, then the 
velocity of the electrons must decrease, which corresponds to 
a decrease in the current and thus in the magnetic field 
strength. If rsol is the radius of the virtual solenoid, and f is the 
rotation frequency of the star, it can be shown that magnetic 
field strength is given by equation (26):

0 02 2 coseff sol

e e

r fq n r fq nB
R R

π m π θ m
= = 	 (26)

When they are orthogonal, the magnetic field strength 
would decrease to 0. However, if the electron movement is 
not due to the star’s rotation, this would not necessarily be 
the case. 
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6.	Electrons as Bosons: The Long-sought 
“Superpartners” of Supersymmetry 
theory?
Supersymmetry theory postulates superpartners of 

ordinary particles as a means to solve some outstanding 
problems of the Standard Model of particle physics 
(Murayama, 2000a). In particular, 

For every particle, there is a superpartner whose spin 
differs by 1/2. By doubling the number of particles again, 
there is similar cancellation between the process with ordinary 
particles only and another process with their superpartners. 
Then the Standard Model can describe physics down to the 
Planck length [10-33 cm], making the marriage a realistic hope. 
In fact, it is a necessary ingredient in the only available 
candidate for quantum theory of gravity, string theory 
(Murayama, 2000b).

An admittedly speculative application of the theory that 
fermions can become bosons under extreme conditions can 
be made in connection with superpartners of Supersymmetry 
theory. These “superpartners”, such as that of the electron, 
the “selectron”, have never been found, despite decades of 
search, including experiments with the Large Hadron Collider 
at CERN. This would be the case if the selectron is an electron 
that can only transition to its boson superpartner under the 
extreme conditions in a White Dwarf poised to collapse, which 
cannot be created in earthbound laboratories. As noted, the 
requirement for a superpartner is for it to have a spin that is 
½ unit different than its partner. In the case of fermions such 
as electrons and neutrons, a spin of 0 would suffice. This 
number naturally emerges from the modified Dirac equation 
solutions. A further possibility is that the symmetric case also 
obtains: conversion of bosons to fermions under the reverse 
conditions, namely exceedingly low value of spacetime 
curvature and temperature. Such conditions would only exist 
in realms of space far removed from baryonic matter and dark 
matter, and likewise could not be simulated in any earthbound 
laboratory. This does not solve any outstanding problems in 
supersymmetry theory, only suggests a reason why 
superpartners have not been found.

7.	 Conclusions and Future Work
Failure of electron or neutron degeneracy pressure 

causing collapse of White Dwarfs and Neutron Stars is partially 
explained by showing that under suitable conditions, fermions 
can become bosons. This does not require a new theory of 
fermions, but only a modified solution to the Dirac equations. 
The theory can be applied to explain the magnetic field 
strength of magnetars. Future work on this topic includes:

•	 How lepton number conservation behaves under 
transformation conditions.

•	 Calculation (estimation) of energy release due to 
atomic collapse and subsequent stellar collapse.

•	 Nature of transformed electron interaction with protons.

•	 Connection between spin and statistics under 
transformation conditions.

•	 Measurement of angular momentum and gyromagnetic 
ratio of transformed electrons.

•	 Research into ways of detecting evidence for conversion 
of bosons into fermions in empty realms of space.
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