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Abstract
In this paper, we found a new model for compact star with charged anisotropic 

matter distribution considering an extended version of the Chaplygin equation of state. 
We specify a particular form of the metric potential Z(x) that allows us to solve the 
Einstein-Maxwell field equations. The obtained model satisfies all physical properties 
expected in a realistic star such that the expressions for the radial pressure, energy 
density, metric coefficients, measure of anisotropy and the mass are fully well defined 
and are regular in the interior of star. The solution obtained in this work can have 
multiple applications in astrophysics and cosmology.
Keywords: Einstein-Maxwell field equations; Chaplygin equation of state; Metric 
potential; Radial pressure; Measure of anisotropy.

Introduction
The study and description of static fluid spheres is an interesting area of research 

and one of great relevance in astrophysics due to formulation of the general theory of 
relativity [1,2]. One of the most important issues in general relativity is finding exact 
solutions to Einstein’s field equations in order to propose physical models of compact 
stars as suggested by Delgaty and Lake [3] who constructed several analytic solutions 
that describe static perfect fluid and satisfy all the necessary conditions to be physically 
acceptable [3]. These exact solutions have also made it possible the way to study cosmic 
censorship and analyze the formation of naked singularities [4].

In the construction of theoretical models of stellar objects, the research of 
Schwarzschild [5], Tolman [6] and Oppenheimer and Volkoff [7] are very important to be 
considered. Schwarzschild [5] found analytical solutions that allowed describing a star 
with uniform density, Tolman [6] developed a method to find solutions of static spheres 
of fluid and Oppenheimer and Volkoff [7] used Tolman’s solutions to study the 
gravitational balance of neutron stars. It is important to mention that Chandrasekhar’s 
contributions [8] in the model production of white dwarfs and in presence of relativistic 
effects and the works of Baade and Zwicky [9] fully propose the main physical concepts 
of neutron stars and also identify astronomic dense objects known as supernovas.

The presence of the electric field can modify the values for surface redshift, 
luminosity, density and maximum mass for stars. Bekenstein [10] considered that the 
gravitational attraction may be balanced by electrostatic repulsion due to electric charge 
and pressure gradient. Komathiraj and Maharaj [11] obtained new classes of exact 
solutions to the Einstein-Maxwell system of equations for a charged sphere with a 
particular choice of one of the metric potentials. Ivanov [12] has studied and developed 
a wide variety of charged stellar models. More recently, Malaver and Kasmaei [13] 
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proposed a model of charged anisotropic matter with 
nonlinear equation of state.

It is well known the fact that the anisotropy plays a 
significant role in the studies of relativistic stellar objects [14-
26]. The existence of solid core, presence of type 3A superfluid 
[27], magnetic field, mixture of two fluids, a pion condensation 
and electric field [28] are most important reasonable facts 
that explain the presence of anisotropy. Bowers and Liang 
[14] generalized the equation of hydrostatic equilibrium for 
the case of local anisotropy. Bhar et al. [29] have studied the 
behavior of relativistic objects with anisotropic matter 
distribution considering the Tolman VII form for the 
gravitational potential.

Many researchers have used a variety of analytical 
methods in order to try to obtain exact solutions of the 
Einstein-Maxwell field equations for anisotropic relativistic 
stars. It is very important to mention that the contributions of 
Komathiraj and Maharaj [11], Thirukkanesh and Maharaj [30], 
Maharaj et al. [31], Thirukkanesh and Ragel [32,33], Feroze 
and Siddiqui [34,35], Sunzu et al. [36], Pant et al. [37] and 
Malaver [38-41] needs to be considered in this field of 
research study. These studies suggest that the Einstein-
Maxwell field equations are very important in the description 
of ultra compacts objects. 

The development of theoretical models of stellar 
structures can consider several forms of equations of state 
[42]. Komathiraj and Maharaj [43], Malaver [44], Bombaci [45], 
Thirukkanesh and Maharaj [30], Dey et al. [46] and Usov [28] 
assume linear equation of state for quark stars. Feroze and 
Siddiqui [34] considered a quadratic equation of state for the 
matter distribution and specified particular forms for the 
gravitational potential and electric field intensity. MafaTakisa 
and Maharaj [47] obtained new exact solutions to the Einstein-
Maxwell system of equations with a polytropic equation of 
state. Thirukkanesh and Ragel [48] have obtained particular 
models of anisotropic fluids with polytropic equation of state 
which are consistent with the reported experimental 
observations. Malaver [49] generated new exact solutions to 
the Einstein-Maxwell system considering Van der Waals 
modified equation of state with polytropic exponent. Bhar 
and Murad [50] obtained new relativistic stellar models with a 
particular type of metric function and a generalized Chaplygin 
equation of state. Recently Tello-Ortiz et al. [51] also found an 
anisotropic fluid sphere solution of the Einstein-Maxwell field 
equations with a modified version of the Chaplygin equation.

It is important to mention the fact that general relativity 
not only studies the interior of stellar objects, it also allows 
the analysis of different cosmological scenarios through the 
Einstein gravity theory as the existence of dark energy, dark 
matter, Phantom and Quintessence fields that were introduced 
to explain the accelerated expansion of the universe [51,52]. 
Chaplygin gas whose equation of state B

P where P is the 
pressure,  the energy-density and B a positive constant, has 
been considered an alternative to the Phantom and 
Quintessence fields [50-53]. In order to adjust this equation of 
state to observational data has been rewritten as B

P  with 

 between 0 and 1 [53]. Furthermore, an 
extended version of the Chaplygin gas equation of state was 
proposed by Pourhassan [54] and its form is B

P A  where 
Aa positive parameter constrained to 0 < A < 1/3.

In this paper, we generated a new model of charged 
anisotropic compact object with the modified Chaplygin 
equation of state proposed for Pourhassan [54] and studied 
by Bernardini and Bertolami [55]. The modified Chaplygin 
equation of state is described by B

P A  where A, B

potential Z(x) that is nonsingular, continuous and well 
behaved in the interior of the star, we can obtain a new class 
of static spherically symmetrical model for a charged 
anisotropic matter distribution. It is expected that the solution 
obtained in this work can be applied in the description and 
the study of internal structure of strange quark stars. The 
article is organized as follows: In the section “Einstein-Maxwell 
System of Equations”, we present Einstein-Maxwell field 
equations. In the section “Charged Anisotropic Model”, we 
make a particular choice for gravitational potential ( )Z x  and 
the electric field intensity and generated new models for 
charged anisotropic matter. In the section “Physical 
Requirements for the New Developed Model”, physical 
acceptability conditions are discussed. The physical properties 
and physical validity of these new solutions are analyzed in 
the “Physical Analysis” section. The conclusions of the results 
obtained are shown in the “Conclusion” section.

Einstein-Maxwell System of Equations
We consider a spherically symmetric, static and 

homogeneous space-time. In Schwarzschild coordinates, the 
metric is given by:

                            (1)

where v(r r) are two arbitrary functions.
The Einstein field equations for the charged anisotropic 

matter are given by [30]:

                           (2)
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where  is the energy density, pr is the radial pressure, E is 
electric field intensity, pt is the tangential pressure and primes 
denote differentiations with respect to r. Using the 
transformations x=cr2, Z(x)=e  and A2*y2(x)=e2v(r) with 
arbitrary constants A and c>0 suggested by Durgapal and 
Bannerji [56], the Einstein field equations can be written as:
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pt-pr is the anisotropy factor 
and dots denote differentiations with respect to x. With the 
transformations of [56], the mass within a radius r of the 
sphere takes the form:

 
                                                                                      (12)

Where

 cZ
x

Z
2

1

In this paper, we assume the following equation of state 
where the radial pressure and the density  are related to the 
following form:

r

B
p A                        (13)

with A and B as constant parameters and 2E .

Charged Anisotropic Model 
In this work, we take the form of the gravitational potential 

Z(x) as Z(x) =1-ax proposed for Malaver [38] and Thirukanesh 
and Ragel [48] where a is a real constant. This potential is 
regular at the origin and well behaved in the interior of the 
sphere. Following Ngubelanga et al. [57] for the electric field, 
we make the particular choice:

                                      (14)
                                                           This electric field is finite at the center of the star and 

remains continuous in the interior. Using Z(x) and eq. (14) in 
eq. (6), we obtain

                                              (15)
Substituting eq. (15) in eq. (13), the radial pressure can be 

written in the form: 

2

2
(3 )

3
r

B
p Ac a ax bx

c a ax bx                                                                                                (16)

Using eq. (15) in eq. (12), the expression of the mass 
function is

                                                                                                (17)

With eq. (14) and Z(x) in eq. (11), the charge density is

                                                                                                (18)

With equations (13), (14), (15) and Z(x), eq. (7) becomes:

                                                                                                (19)

Integrating eq. (19) we obtain:

                                                                                                (20)

Where for the convenience we have let 

                                                                                                (21)

                                                                                                (22)

                                                                                                (23)

                                                                                                (24)

And 1c is the constant of integration.
The metric functions e  and e2v can be written as: 

                                                                                                (25)

                                                                                                (26)
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Physical Requirements for the New 
Developed Model

Following Delgaty and Lake [3], Thirukkanesh and Ragel 
[48] and Bibi et al. [58] for a model to be physically acceptable, 
it must satisfy the following conditions:
(i) Regularity of the metric potentials in the stellar interior and 
at the origin.
(ii) The radial pressure should be positive, decreasing with the 
radial coordinate and vanishing at the centre of the fluid 
sphere.
(iii) The energy density should be positive inside of the star 
and a decreasing function of the radial parameter.
(iv) The radial pressure and density gradients rdp

dr
d

dr
r

(v) The causality condition requires that the radial speed of 
sound should be less than speed of light throughout the 
model, i.e. .
(vi) The radial pressure and the anisotropy is equal to zero at 

r=0) =0.
(vii) The charged interior solution should be matched with the 
Reissner–Nordström exterior solution, for which the metric is 
given by:

12 2
2 2 2 2 2 2 2

2 2

2 2
1 1 sin

M Q M Q
ds dt dr r d d

r r r r                         (28)
 through the boundary r=R where M and Q are the total 
mass and the total charge of the star, respectively.

The conditions (ii), (iii) and (iv) imply that the radial 
pressure and energy density must reach a maximum at the 

centre and decreasing towards the surface of the sphere.

Physical Analysis
We now present the analysis of the physical 

characteristics for the new model. The metric functions e  
and e2v and should remain positive throughout the stellar 
interior and in the origin e (0)=1,
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demonstrates that the gravitational potentials are regular at 
the centre r=0. The energy density and radial pressure are 
positive and well behaved inside the stellar interior. Also, we 
have the central density and pressure (0)=3ac and 0 3

3r

B
p acA

ac

. According to the expression of radial pressure, p
r
(0) will be 

non-negative at the centre as it is satisfied by the condition 
3acA > 3

B

ac
. 

In the surface of the star r=R, we have pr(r=R)=0 and
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For a realistic star, it is expected that the gradient of 
energy density and radial pressure should be decreasing 
functions of the radial coordinate r. In this model, for all 
0<r<R, we obtain respectively:
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and according to the equations (29) and (30), the energy 
density and radial pressure decrease from the centre to the 
surface of the star. 

From eq. (17), we have:
2 2 4 335 7 5
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and the total mass of the star is: 
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The causality condition demands that the radial sound 
speed defined as 

 
should not exceed the speed of light 

and it must be within the limit in the interior of the 
star [3]. In this model, we have:

2 2
sr

dp
v A

c a ax bx                                          (33)

For the eq. (33) and with the transformations of Durgapal 



and Bannerji [56] we can impose the condition:
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On the boundary r=R, the solution must match the 
Reissner–Nordström exterior space–time as:
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and therefore, the continuity of ev and e  across the 
boundary r=R is
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Then for the matching conditions, we obtain:
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The figures 1-8 represent the graphs of 2, 
2sr, rdp

dr
 and d

dr  respectively with a=0.09, b=0.015, A=0.066, 
B=0.0000054, c=1 and stellar radius of r=1.46 km.

Figure 1. Variation of radial pressure with the radial coordinate.

Figure 2. Variation of energy density with the radial coordinate.

Figure 3. Variation of Mass function M(r) with the radial 
parameter.

Figure 4. 2 with the radial parameter.



Figure 5.

Figure 6. Variation of radial speed sound 2
srv with the radial 

parameter.

Figure 7. Variation of gradient of radial pressure with radial 
coordinate.

Figure 8. Variation of gradient of density with radial coordinate.

The figure 1 shows that the radial pressure is continuous, 
finite, decreases radially outward and vanishes at the 
boundary. In figure 2, we note that the energy density also 

is finite, continuous and monotonically decreasing function. 
In figure 3, it is observed that the mass function is regular, 
strictly increasing and well behaved. Figure 4 shows that the 
charge density is regular at the centre, non-negative and 
grows with the radial parameter. In figure 5, the anisotropy 

r=0, it monotonically increases and is 
continuous in the stellar interior reaching a maximum on the 
surface of the star. In figure 6, we note that the 2 r

sr

dp
v

d

 
is within 

the desired range , which is a physical requirement 
for the construction of a realistic star [3]. The figures 7 and 8 
respectively show that the gradients of radial pressure rdp

dr

 
and 

energy density d

dr
 are decreasing throughout the star.

Conclusion
In this paper, we have solved Einstein-Maxwell field 

equations with a particular form of gravitational potential and 
a modified Chaplygin equation of state and presented a new 
class of solution that satisfies the physical requirements of a 
anisotropic charged stellar model. The radial pressure, energy 
density, anisotropy, mass function, charge density and all the 
metric coefficients behave well inside the stellar interior and 
are free of singularities.

The new obtained solution is expressed in terms of 
elementary functions which can be useful in the description of 
compact strange star candidates and the physical study of 
some kinds of white dwarfs with masses ~0.06 sol and r=1.5 
Km. 

The values of parameters A and B have been chosen in 
order to maintain the causality condition and the regularity of 
metric potentials inside the radius of the star. With E2=B=0, 
the model of Lobo for dark energy stars [59] can be recovered 

B=0, we 
can obtain new models with linear equation of state within 
the framework of MIT-Bag model and generate families of 
exact solutions for the Einstein-Maxwell field equations for 
relativistic compact objects and configurations with 
anisotropic matter distribution. It is to be expected that the 
stellar models obtained in this research can be used in the 
description of the internal structure of strange quark stars. 
The arbitrary constants A, A* B, C, D, E must be well defined in 
order to reproduce numerical data consistent with super-
dense star models like neutron star and pulsars. 
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