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Abstract
C-H activation reactions have become a powerful method to direct functionalization 

of alkyl, alkenyl, and aryl C-H bonds over the past few decades. Among of them, Iridium 
catalyzed transformation of aryl C-H bonds to C-B bonds is one of the most useful 
method. However, a central challenge in these reactions is controlling their site selectivity. 
Over the past decade, some methods have been developed to accomplish regio-
selective C-H borylation by catalysts or substrates modification. In this paper, some 
methods developed in recent years to realize ortho-, meta-, and para-selective C-H 
borylation will be summarized and their strategy and mechanism of these methods will 
be discussed.

Keywords: Iridium; Regioselective; C-H borylation; Non-covalent bond interaction.

Introduction
Carbon-Carbon bond are the molecular “bricks and mortar” from which diverse 

architectures in living organisms and manmade materials are constructed. In the field of 
organic chemistry, there are numerous methods for carbon-carbon bond construction, 
which have been developed, ranging from traditional nucleophilic reaction to metal 
catalyzed reaction for formation of C-C bond. Among of them, Suzuki-Miyaura reaction 
has become one of the most powerful method for the construction of C-C bond since 
its discovery in 1979 [1]. Arylboron is an important reagent for participating in this 
reaction. In addition, organoboron reagents as versatile intermediates have been 
extensively used in synthetic chemistry because it can be converted to more complex 
molecules by further transformations, such as Chan-Lam-Evans coupling, [2-4] and 
oxidation [5-7]. Therefore, developing a highly effective method for synthesis of 
organoboron reagents is very desirable.

Traditional methods to obtain organoboron reagents are these three methods 
(Scheme 1), which contains synthesis from organolithium or organomagnesium, 
hydroboration of alkenes or alkynes and haloboration of terminal alkynes [8]. However, 
there are some limitations of these methods. For example, the synthesis from 
organometallics usually requires stoichiometric amounts of strong base such as n-BuLi 
and a harsh lower temperature to use in the reaction. As for the reactions of hydroboration 
and haloboration, boron atom always adds to the terminal position of alkenes or 
alkynes. It is difficult to obtain internal boron reagents form these two methods. Besides, 
these three methods also are not in accordance with the rule of atomic economy. The 
development of transition metal catalyzed C-H borylation provides a good way for 
preparation of organoboron reagents, especially for aromatic boron reagents.
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Scheme 1. Traditional methods for synthesis of organoboron 
reagents.
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Scheme 2. Steric effect controls regioselectivity.

The most active catalyst for the borylation of aromatic 
compounds is the iridium/bipyridine catalytic system, which 
was found by Prof. Hartwig, Ishiyama, Miyaura et al. in 2002 
[9-11]. This iridium catalytic system could make the C-H 
borylation of aromatic compounds proceed easily under mild 
condition. Moreover, they also found the C-H borylation 
reaction often occurs with regioselectivity controlled 
predominantly by steric effect [11] (Scheme 2). For instance, 
mono-substituted arenes as substrates, borylation always 
gives a mixture of meta- and para-borylated products in 2:1 
ratio [9]. The ortho-borylated isomer was usually not formed 
because the steric hindrance of methyl substituent. In the 
case of di-substituted arenes, borylation reaction always 
proceeds at the position with less steric hindrance [12,13]. 
Reactions of 1, 4-disubstituted aromatic compounds could 
account for this steric effect more apparently. Borylation of 
asymmetrically 1, 4-disubstituted substrates, borylation 
proceeds at the ortho-position of substituent with less steric 
hindrance between the two possible reactive positions. 
Although steric effect could control regioselectivity of this 
reaction, achieving accurately control site-selectivity still exist 
many challenges in this kind of reaction. In the following, 
some methods developed in recent years will be summarized 
according to ortho-, meta- and para-selectivity.

Ortho-Selective C-H Borylation
Directing group assist ortho-selective C-H borylation was 

firstly developed by Boebel et al. in 2008 [14]. They disclosed 
the example of ortho-selective C-H borylation for aromatic 
substrates directed by alkylhydrosilyl group (Scheme 3). This 
reaction proceeded according to a relay directed process. The 
alkylhydrosilyl group could reversibly attach to iridium center 
by σ-bond metathesis process to form a 16-electron 
intermediate, and bring iridium-boryl catalytic species close 
to ortho-position, which will facilitate the cleavage of ortho 
C-H bond. Benzyl dimethylsilane as substrate, the reaction 
could proceed with high ortho-selectivity in good yield.

Hartwig et al.(J. Am. Chem. Soc. 2008)
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Scheme 3. Alkylhydrosilyl group directed ortho-selectivity.

In 2009, Kawamorita et al. [15,16] reported an ortho-
selective C-H borylation of aromatic compounds catalyzed by 
silica supported mono-dentate phosphine ligand. In this 
reaction, mono-dentate ligand and iridium formed a 
14-electrons intermediate, which contains two vacant sites, 
one for directing group of substrate and the other for the 
cleavage of ortho C-H bond (Scheme 4). Therefore, the ortho-
selective C-H borylation proceeded through the intermediate. 
The reaction has very wide substrates scope including 
benzoate, ether, sulfonate and so on. In addition, he also 
developed an ortho-selective C-H borylation of 
2-phenylpyridine in 2011, which was catalyzed by Rh with 
silica supported mono-dentate phosphine ligand.
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Scheme 4. mono-Dentate ligand controlled ortho-selectivity.
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Later, Ligand-enabled ortho-selective C-H borylation was 
found by several groups, in which ortho-selectivity is achieved 
by modifying ligand structure (Scheme 5). In traditional 
methods, bipyridine type ligand is the most commonly used in 
iridium catalyzed sp2 C-H borylation reaction. In 2014, Ghaffari 
et al. [17] reported silyl-phosphorous ligand catalyzed ortho-
selective C-H borylation of alkyl benzoate. The reaction not 
only gave good yields of borylated product but also controlled 
ortho-selectivity very well. In 2016, Bisht and Chattopadhyay 
[18] also developed ortho-selective C-H borylation of 
benzaldehydes using 8-aminoquinoline as ligand, in which 
tert-butylamine was as the traceless protecting/directing 
group [17,18]. These two ortho-borylations could be suitable 
for a broad range of substrates and all of them give good to 
excellent yield and regioselectivity. The mechanism of these 
two reactions is similar to directing group assisting process. 
Designed ligands occupy two vacant orbital’s, directing group 
brings the other one close to ortho-position.
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Scheme 5. Bidentate ligand enabled ortho-selectivity.

In addition, Wang et al. [19] reported a new ortho-
selective C-H borylation catalyzed by a designed N, 
B-bidentate boryl ligand in 2017. Introducing convenient 
silylborane precursors onto N, B-bidentate boryl ligands, the 
iridium (III) complex was formed via Si-B oxidative addition.
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Scheme 6. N, B-Bidentate ligand controlled ortho-selectivity.

However, no matter in directing group assist ortho-
borylation or in ligand-enabled ortho-borylation, all of them 
usually require already presence or installation of a directing 
group in substrates. In contrast, traceless directing group 
would be more attractive alternatives; non-covalent bond 
interaction controlled regioselective C-H borylation reaction 
is a new strategy. At present, non-covalent organocatalysis 
has been successfully applied into some reactions to achieve 
regioselective C-H borylation of aromatic substrates by 
employing hydrogen bonding, ion pairing, Lewis acid-base 
interaction and electrostatic interaction. The first ortho-
selective C-H borylation of aromatic compounds controlled 
by non-covalent bond interaction was found by Smith et al. in 
2012, in which hydrogen bonding interaction between the H 
atom of Boc protected aniline substrate and the O atom of 
Bpin ligand favored ortho-selective C-H borylation [20].

Smith et al.(Angew. Chem. Int. Ed. 2013)

Kuninobu and Takai et al.(Angew. Chem. Int. Ed. 2013)
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Scheme 7. Non-Covalent bond interaction controlled ortho-selectivity (I).

In 2013, Kuninobu [21] reported an ortho-selective C-H 
borylation of 2-phenylpyridine. In this reaction, 9-borabicyclo 
[3.3.1] nonane (9-BBN) was selected as boryl reagent; the 
boryl group was introduced at the ortho-position of 2-phenyl 
pyridine by Lewis acid-base interaction between the Lewis 
basic N atom and the Lewis acidic B atom [20]. Based on this 
result, Li et al. [22] developed an ortho-selective borylation of 
aryl sulfides using a Lewis acid-base interaction between 
designed ligand in the catalyst and a substituent (a sulfur 
atom) of the substrates in 2017 (Scheme 8). They think the 
steric repulsion between the iridium-boryl catalytic species 
and substituent(s) of the substrates would be an obstacle to 
realize ortho-selectivity; it is difficult to promote the site-
selectivity using other non-covalent bond interaction such as 
hydrogen bonding interaction. Thus, a stronger interaction 
was used in this reaction. Almost the same time; Smith et al. 
reported a strategy for ortho-selective borylation of phenol 
derivatives. From selectivity of observation with ArylOBpin 
(pin = pinacolate) [23], they hypothesized that an electrostatic 
interaction between the partial negatively charged OBpin 
group and the partial positively charged bipyridine ligand of 
the catalyst favors ortho-selectivity.
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M. R. Smith et al .(J. Am. Chem. Soc. 2017 )
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Scheme 8. Non-Covalent bond interaction controlled ortho-selectivity (II).

meta-Selective C-H Borylation
The small difference in intrinsic reactivity of C-H bonds in 

organo-molecules makes it difficult to achieve regiocontrol. 
Directing group assist ortho-selectivity by forming five or six 
cyclometallation has been developed very well in the past 
years. However, the directed activation of C-H bond that are 
distal to directing group still exist challenges such as meta- and 
para-selectivity because the target C-H bond is geometrically 
inaccessible to directed metalation owing to the ring strain. In 
this context, non-covalent bond interaction between catalyst 
species and substrate provide a good way to solve this problem. 
Recent years, meta- and para-selective C-H borylation of 
aromatic compounds have been achieved using non-covalent 
bond interaction. A significant breakthrough was made by 
Kuninobu group in 2015 [24]. They developed an iridium-
catalyzed meta-selective C–H borylation of aromatic 
compounds using a newly designed catalytic system (Scheme 
9). The hydrogen bonding interaction between the urea moiety 
of designed ligand and a hydrogen-bond acceptor in the 
substrate (carbonyl of amide) places the iridium catalyst to the 
meta-position of aromatic amides, eaters, phosphonates, and 
phosphonic diamide and phosphine oxides. When compared 
with directing group-controlled reaction, the hydrogen-
bonding ligand only required in a catalytic amount which 
interacts reversibly with the substrate.

Kuniobu and Kanai et al.(Nat. Chem. 2015)
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Scheme 9. Hydrogen-bonding interaction controlled meta-selectivity.

In 2016, Davis et al. reported an ion pair-directed approach 
to controlling regioselectivity in the iridium-catalyzed borylation 
of two classes of aromatic quaternary ammonium salts [25]. A 
single electrostatic interaction could be successfully employed 
to position a reactive metal catalytic species to meta-target C-H 
bond. This is the first example to demonstrate the viability of ion-
paring as a powerful tool for region control.

Phipps et al.(J. Am. Chem. Soc. 2016)
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Scheme 10. Ion-paring and Lewis acid-base interaction controlled 
meta-selectivity

Besides, Bisht reported meta borylation proceeds via an 
electrostatic interaction and a secondary interaction between 
a designed ligand and substrate [18]. The origin of meta-
selectivity was controlled by two factors: i) an electrostatic 
interaction of the tris(boryl)iridium complex attached with the 
electron-rich ligand substrate; ii) a secondary Lewis acid-base 
interaction between the imine N atom and the boryl B atom 
of catalyst.

para-Selective C-H Borylation
Electronic aromatic substitution is a traditional method to 

achieve para-selective C-H functionalization. However, the 
substrate scope of this method is very limit, only when 
strongly electron-donating groups (EDG) such as a 
dimethylamino group are attached to the benzene rings. In 
addition, it always gives a mixture of ortho- and para-product 
at the same time. Therefore, many groups were devoted into 
developing a strategy that only favors para-selective 
functionalization. In 2015, Saito accomplished a highly para-
selective aromatic C-H borylation of mono-substituted 
benzene derivatives by using a new iridium catalyst bearing a 
bulky diphosphine ligand. The site-selectivity raised from the 
steric repulsion between the bulkiness of substituent on 
benzene ring and the diphosphine-iridium catalyst [26].
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Itami et al.(J. Am. Chem. Soc. 2015)
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Scheme 11. Steric effect controlled para-selectivity.

By using the strategy of steric repulsion between catalyst 
and substrate, Yang and coworkers reported a method of para-
selective C-H borylation of benzamides in 2017 by using 
cooperative iridium/aluminum catalysis [27]. They thought that 
the regioselectivity is controlled by the steric repulsion between 
the coordination of substrate to the bulky aluminum and the 
boryl-iridium catalytic species because the coordination shields 
the ortho- and meta- reactive position of substrate (Scheme 11). 
In addition, Hoque disclosed to a highly efficient method for 
para-selective borylation [28]. By modifying the core structure of 
bipyridine, the designed L-shape ligand will recognize the 
functionality of the oxygen atom of the ester carbonyl group via 
non-covalent interaction, which provides an unprecedented 
controlling factor for para-selective C-H activation.

Nakao et al.(J. Am. Chem. Soc. 2016)
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Scheme 12. Ligand enabled ortho-selective C-H borylation.

Conclusion
Organo-boron compounds as versatile intermediate has 

been widely employed in organic synthesis. The development 
of regioselective C-H borylation provides an efficient way to 
prepare them using different strategies such as directing 
group assist ortho-selectivity, ligand enable meta- and para-
selectivity. However, there are many challenges that remain to 
be addressed to improve the practicality and versatility of C-H 
borylation reaction in the future. For instance, it will be of 
great importance to develop more effective ligand that enable 
regioselective C (sp3)-H borylation, especially for remote 
position. C (sp3)-H bond is building block for constructing 
natural products, regioselective functionalization could highly 
improve the efficiency for preparing biological molecules.
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