3rd International
 Nanotechnology Conference \& Expo

May 7-9, 2018 Rome, Italy

Defect States in Hexagonal Boron Nitride: Assignments of Observed Properties and Prediction of Properties Relevant to Quantum Computation

A. Sajid ${ }^{1,2 *}$, Jeffrey R. Reimers ${ }^{1}$ and Michael J. Ford ${ }^{1}$
${ }^{1}$ School of Mathematical and Physical Sciences, University of Technology Sydney, Australia
${ }^{2}$ Department of Physics, GC University Faisalabad, Pakistan

Key properties of 9 possible defect sites in hexagonal boronitride (h-BN), $\mathrm{V}_{\mathrm{N}}, \mathrm{V}_{\mathrm{N}}{ }^{-1}, \mathrm{C}_{\mathrm{N}}, \mathrm{V}_{\mathrm{N}} \mathrm{O}_{2 \mathrm{~B}}, \mathrm{~V}_{\mathrm{N}} \mathrm{N}_{\mathrm{B}}, \mathrm{V}_{\mathrm{N}} \mathrm{C}_{\mathrm{B}}, \mathrm{V}_{\mathrm{B}} \mathrm{C}_{\mathrm{N}}, \mathrm{V}_{\mathrm{B}} \mathrm{C}_{\mathrm{N}} \mathrm{Si}_{\mathrm{N}}$, and $\mathrm{V}_{\mathrm{N}} \mathrm{C}_{\mathrm{B}} \mathrm{Si}_{\mathrm{B}}$ are predicted using density-functional theory (DFT) corrected applying results from high-level ab initio calculations. Observed h-BN electron-paramagnetic resonance (EPR) signals at $22.4 \mathrm{MHz}, 20.83 \mathrm{MHz}$, and 352.70 MHz are assigned to V_{N}, C_{N}, and $\mathrm{V}_{\mathrm{N}} \mathrm{O}_{2 \mathrm{~B}}$, respectively, while the observed photoemission at 1.95 eV is assigned to $\mathrm{V}_{\mathrm{N}} \mathrm{C}_{\mathrm{B}}$. Detailed consideration of the available excited states, allowed spin-orbit couplings, zero-field splitting, and optical transitions is made for somewhat analogous defects $V_{N} C_{B}$ and $V_{B} C_{N}$. Long-living quantum memory in h-BN can be achieved for $V_{N} C_{B}$ owing to the lifetime differences of first and second order transitions from different triplet sub-states to the singlet ground state as is seen for $\mathrm{N}_{2} \mathrm{~V}$ defect in diamond. While $\mathrm{V}_{\mathrm{B}} \mathrm{C}_{\mathrm{N}}$ is predicted to have a triplet ground state, and for it spin-polarization by optical means is predicted to be feasible while suitable optical excitations are also identified, making this defect of interest for possible quantum-qubit operations.

Biography:

Sajid Ali is a $3^{\text {rd }}$ year PhD student at University of Technology Sydney, Ultimo, New South Wales 2007, Australia. He is also a lecturer in physics at GC University Faisalabad, Pakistan. He has over 15 publications that have been cited over 100 times.

