

3rd International Nanotechnology Conference & Expo

May 7-9, 2018 Rome, Italy

Defect States in Hexagonal Boron Nitride: Assignments of Observed Properties and Prediction of Properties Relevant to Quantum Computation

A. Sajid^{1,2*}, Jeffrey R. Reimers¹ and Michael J. Ford¹

¹School of Mathematical and Physical Sciences, University of Technology Sydney, Australia ²Department of Physics, GC University Faisalabad, Pakistan

We properties of 9 possible defect sites in hexagonal boronitride (h-BN), V_N , V_N^{-1} , C_N , V_NO_{2B} , V_NN_B , V_NC_B , V_BC_N , $V_BC_NSi_N$, and $V_NC_BSi_B$, are predicted using density-functional theory (DFT) corrected applying results from high-level *ab initio* calculations. Observed h-BN electron-paramagnetic resonance (EPR) signals at 22.4 MHz, 20.83 MHz, and 352.70 MHz are assigned to V_N , C_N , and V_NO_{2B} , respectively, while the observed photoemission at 1.95 eV is assigned to V_NC_B . Detailed consideration of the available excited states, allowed spin-orbit couplings, zero-field splitting, and optical transitions is made for somewhat analogous defects V_NC_B and V_BC_N . Long-living quantum memory in h-BN can be achieved for V_NC_B owing to the lifetime differences of first and second order transitions from different triplet sub-states to the singlet ground state as is seen for N_2V defect in diamond. While V_BC_N is predicted to have a triplet ground state, and for it spin-polarization by optical means is predicted to be feasible while suitable optical excitations are also identified, making this defect of interest for possible quantum-qubit operations.

Biography:

Sajid Ali is a 3rd year PhD student at University of Technology Sydney, Ultimo, New South Wales 2007, Australia. He is also a lecturer in physics at GC University Faisalabad, Pakistan. He has over 15 publications that have been cited over 100 times.