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Abstract
The present article is aimed at an investigation of the propagation of elasto-

thermodiffusive (ETN) surface waves in a homogenous isotropic, thermally conducting, 
semiconductor material half-space underlying a thermally conductive viscous or 
inviscid liquid layer of finite thickness (d) with varying temperature. The relaxation 
times of heat and charge carrier fields are also taken into consideration during the 
study. Secular equation that governs the propagation of elasto-thermodiffusive surface 
(interfacial) waves in the considered composite structures has been derived in compact 
form after obtaining general wave solution of the model. Some particular forms of the 
general secular equation are also deduced and investigated. Numerical solution of 
secular equation and other relevant relations is carried out for germanium (Ge) and 
silicon (Si) semiconductor material under different situations with the help of functional 
iteration numerical technique along with irreducible case of Cardano’s method. 

Keywords: Thermal Relaxation time; Rayleigh wave; Diffusion; Lifetime; Thermally 
conductive liquid; Semiconductor. 

Introduction
Surface acoustic waves are one of the broad classes of acoustic waves used in 

ultrasonic applications. These are also applied to the study of physical changes at the 
solid-liquid interfaces of materials in contact with fluid. The generation of acoustic (or 
elastic) waves due to the transient thermal heating of a material is rapidly becoming a 
powerful tool for characterization of the material impinging on its microstructure. The 
surface acoustic waves are also widely used in electronics and medical devices because 
of the following reasons:
(i)	 The propagation velocities of these waves are of the order of a few km/sec leading 

to the much smaller dimensions of the devices;
(ii)	 The energy of these waves is concentrated in the vicinity of the top of the surface 

of the device, so that generation, detection and control are directly possible and 
can be done on the surface itself. 
The theories of elastic and thermoelastic wave propagation are well established by 

Graff [1] and Nowacki [2]. Maruszewski [3-7] presented theoretical considerations of 
the simultaneous interaction between elastic, thermal and charge carrier’s fields in 
semiconductors. Sharma and Thakur [8] studied the plane harmonic elasto-
thermodiffusive (ETNP) waves in semiconductor materials. The shear waves get 
decoupled from rest of the motion and remain independent of the influence of other 
fields. According to the frequency equation, four coupled longitudinal waves namely; 
quasi-thermoelastic (QTN), elastodiffusive (QEN/QEP), thermodiffusive (QTN/QTP), 
and a quasi-thermal (T-mode); are possible to be propagated in an infinite semiconductor. 
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Sharma et al. [9-10] investigated the propagation characteristics 
of elasto-thermodiffusive (ETN) surface acoustic waves in a 
semiconductor material half-space. The effects of thermal 
relaxation and life times of charge carrier fields on the various 
characteristics of elasto-thermodiffusive (ETN) surface waves 
propagating in a semiconductor material have been 
investigated. Sharma et al. [11] investigated the propagation 
of elasto-thermodiffusive surface wave in a semiconductor 
half-space underlying a fluid with varying temperature. 
Sharma et al. [12] studied acoustodiffusive Rayleigh waves in 
a semiconductor material half space in contact with fluid 
medium. Sharma et al. [13] studied the acousto thermodiffusive 
interfacial waves in a semiconductor loaded with viscous fluid. 
Sharma et al. [14] studied the reflection of acoustodiffusive 
waves from the boundary of a semiconductor half space. 
Sharma et al. [15] investigated the modeling of reflection and 
transmission of acoustic waves at fluid semiconductor 
interface. Sharma [16] investigated the effect of liquid loading 
on lamb waves in a semiconductor material plate.

Initial work relating to the use of acoustic wave devices in 
liquid-phase sensing applications utilized conventional bulk-
acoustic-wave (BAW) piezoelectric crystal resonators 
investigated by Kansh and Bartiaans [17]. Josse et al. [18] 
presented an analytical solution for the resonance condition 
of the piezoelectric quartz resonator with one surface in 
contact with viscous conductive liquid. 

The present paper is aimed at an investigation of the 
propagation of elasto-thermodiffusive (ETN) surface waves in a 
homogenous isotropic, thermally conducting, semiconductor 
material half-space underlying a thermally conductive viscous 
or inviscid fluid layer of finite thickness (d) with varying 
temperature. It is based on the model of governing equations 
derived by Maruszewski [6] and non-dimensionalized by 
Sharma and Thakur [8]. The relaxation times of heat and charge 
carriers are also taken into consideration during the study. 
Secular equation that governs the propagation of elasto-
thermodiffusive surface (interfacial) waves in the considered 
composite structure has been derived in compact form after 
obtaining general wave solution of the model. Some particular 
forms of the general secular equation are also deduced and 
investigated. Numerical solution of secular equation and other 
relevant relations is carried out for germanium (Ge) and (Si) 
semiconductor material under different situations with the help 
of functional iteration numerical technique along with 
irreducible case of Cardano’s method. The computer simulated 
results have been presented graphically.

Formulation of the problem
Consider an extrinsic, homogeneous, isotropic, thermally 

conducting, elastic n-type semiconductor half-space, initially 
under undeformed state at uniform temperature . The 
semiconductor is loaded with fluid layer of finite thickness d. 
The considered fluid may be inviscid or viscous with varying 
temperature but thermally conducting which can be modeled 
as a heat source in addition to normal hydrostatic load. The 
surface of the semiconductor is assumed to be in welded 
contact with the fluid medium. We take the origin of 

rectangular Cartesian coordinate system oxyz on the interface 
surface of both media and z-axis pointing normally into the 
semiconductor half-space, which is thus represented by z 0≥ . 
The x-axis is taken along the direction of acoustic wave 
propagation in the semiconductor half-space. Here, we focus 
of the same geometry as given in Figure 1. All particles on a 
line parallel to y-axis are assumed to be equally displaced so 
that all field quantities remain independent of y-coordinate 

viz .0≡
∂
∂
y

 Further the disturbance is assumed to be confined 

to the neighbourhood of the free surface and hence vanishes 
as z .∞→  

Figure 1. Geometry of the problem 

In linear theory of thermoelasticity for semiconductors, 
the non-dimensional governing field equations for temperature 
change T(x, z, t), displacement vector u(x, z, t) = (u, 0, w) and 
electron diffusion field N(x, z, t); in the absence of body forces, 
electro-magnetic forces and heat sources; are given by 
Maruszewski [6] and Sharma and Thakur [8].
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Here µλ , 	are Lame parameters ρ;  is the density of 
the semiconductor; nλ are the elasto-diffusive constants of 
electrons, Tα  is the coefficient of linear thermal expansion 
of the material; K is the thermal conductivity, nα  is the 
thermo-diffusive constant of electrons; nQQn aaa ,,nQQn aaa ,, nQQn aaa ,, are flux 
like constants; nD  is the diffusion coefficient of electron. The 
quantities mnq and mqn are the Peltier-Seebeck-Dufour-Soret 
like constants; nQ tt ,  are respectively, the relaxation times of 
heat and electron fields, eC  is the specific heat at constant 
strain, +

nt denotes the life time of the carriers’ field and 0n  
is the non-equilibrium concentration of electron. The densities 
of the charge carriers at doping level are assumed to be of 
such values that the life time ,+

nt  and the diffusion coefficient 
nD is independent of them.

Further the equations (1) are subjected to the following 
assumptions:
(i)	 All the considerations are made in the frame work of the 

phenomenological model.
(ii)	 The electric neutrality of the semiconductor is satisfied.
(iii)	 The magnetic field effect is ignored.
(iv)	 The mass of charge carrier fields is negligible.
(v)	 The electron field within the boundary layer is very weak 

and can be neglected.
(vi)	 The recombination function of electrons is reduced on 

the basis of the facts that take care of defects and hence 
concentration values of the charge carrier field [19].

We define the quantities
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where ∗ω  and Tε  are respectively, the characteristic frequency 
and thermoelastic coupling parameters of the semiconductor.

Upon introducing the quantities (3) in the basic equations (1), 
we obtain
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The equation (6.4) corresponds to purely transverse waves 
which get decoupled from rest of the motion and are not 
affected by the thermal and charge carrier fields. This elastic 
wave travels in space without attenuation. The equations (6.1) 
to (6.3) in the above system can be simplified under the 
assumption that is considered semiconductor of relaxation 
type. For such materials, the diffusion approximation of the 
physical process ceases to be obligatory and the diffusion / 
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In liquid medium the velocity components are given by
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where Lφ  and Lψ are respectively, the scalar and vector 
point velocity potentials. Thus in the liquid medium the 
governing equations are given by
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Here, Lc is the velocity of sound in liquid, Lλ is the bulk 
modulus, Lρ  and Lµ  is respectively the density and dynamic 
viscosity of the liquid; *α  is the coefficient of volume thermal 
expansion; and LT  is the temperature deviation of liquid 
medium from ambient temperature ∗

0T . In case of non-
conducting liquid )0( =k , so that 0* =a  the equation (8.3) 
becomes L

LL
LT φ

β
δρε 2

2

∇
−

=  

Boundary conditions
The continuity of stresses, displacement, electron concentration, 
temperature change, electron and heat fluxes on the solid-
fluid interface is assumed to be satisfied. This leads to the 
following non-dimensional boundary conditions at the solid-
fluid interface )0( =z .

(10.1)

(10.2)

(10.3)
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(10.6) 

(10.7) 

In case of non-conducting fluid )0( =k the boundary conditions 
(10.5) to (10.7) reduces to 
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Here 0→nh  correspond to thermally insulated and charge 
free (no flow of electron flux across the boundary) boundary 
and ∞→nh  refers to isothermal and equipotential one.

Formal solution
We consider the case of time harmonic waves so that the 
solutions ,φ  ,T  ,N  and ,ψ  Lφ , Lψ of equations (6) take 
the form:

     (11)

where 
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In case of relaxation type semiconductor life time and relaxation time are comparable   n
n tt  and 

consequently 
n  gets modified. In general, the characteristic roots )3,2,1( imi  are complex and as 

we are considering surface waves only, so without loss of generality we choose only that form of im and i  

which satisfies the radiation condition required for the boundedness of the solution. Hence the solution is a 

superposition of the plane waves attenuating with depth. 

 

Derivation of dispersion relation and its reductions 

We consider the situation in which semiconductor half-space is in contact (or loaded) with 

viscous inviscid liquid. Upon applying the required interface boundary conditions (10) at the 

solid-fluid interface  0z   and subsequently requiring non-trivial solution of the resulting 

coupled equations, after lengthy but straight forward algebraic reductions and simplifications, the 

secular dispersion relation for Rayleigh surface waves is obtained as 
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In case of relaxation type semiconductor life time and relaxation time are comparable   n
n tt  and 

consequently 
n  gets modified. In general, the characteristic roots )3,2,1( imi  are complex and as 

we are considering surface waves only, so without loss of generality we choose only that form of im and i  

which satisfies the radiation condition required for the boundedness of the solution. Hence the solution is a 

superposition of the plane waves attenuating with depth. 

 

Derivation of dispersion relation and its reductions 

We consider the situation in which semiconductor half-space is in contact (or loaded) with 

viscous inviscid liquid. Upon applying the required interface boundary conditions (10) at the 

solid-fluid interface  0z   and subsequently requiring non-trivial solution of the resulting 

coupled equations, after lengthy but straight forward algebraic reductions and simplifications, the 

secular dispersion relation for Rayleigh surface waves is obtained as 
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In case of relaxation type semiconductor life time and relaxation time are comparable   n
n tt  and 

consequently 
n  gets modified. In general, the characteristic roots )3,2,1( imi  are complex and as 

we are considering surface waves only, so without loss of generality we choose only that form of im and i  

which satisfies the radiation condition required for the boundedness of the solution. Hence the solution is a 

superposition of the plane waves attenuating with depth. 

 

Derivation of dispersion relation and its reductions 

We consider the situation in which semiconductor half-space is in contact (or loaded) with 

viscous inviscid liquid. Upon applying the required interface boundary conditions (10) at the 

solid-fluid interface  0z   and subsequently requiring non-trivial solution of the resulting 

coupled equations, after lengthy but straight forward algebraic reductions and simplifications, the 

secular dispersion relation for Rayleigh surface waves is obtained as 
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In case of relaxation type semiconductor life time and relaxation time are comparable   n
n tt  and 

consequently 
n  gets modified. In general, the characteristic roots )3,2,1( imi  are complex and as 

we are considering surface waves only, so without loss of generality we choose only that form of im and i  

which satisfies the radiation condition required for the boundedness of the solution. Hence the solution is a 

superposition of the plane waves attenuating with depth. 

 

Derivation of dispersion relation and its reductions 

We consider the situation in which semiconductor half-space is in contact (or loaded) with 

viscous inviscid liquid. Upon applying the required interface boundary conditions (10) at the 

solid-fluid interface  0z   and subsequently requiring non-trivial solution of the resulting 

coupled equations, after lengthy but straight forward algebraic reductions and simplifications, the 

secular dispersion relation for Rayleigh surface waves is obtained as 
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In case of relaxation type semiconductor life time and relaxation time are comparable   n
n tt  and 

consequently 
n  gets modified. In general, the characteristic roots )3,2,1( imi  are complex and as 

we are considering surface waves only, so without loss of generality we choose only that form of im and i  

which satisfies the radiation condition required for the boundedness of the solution. Hence the solution is a 

superposition of the plane waves attenuating with depth. 

 

Derivation of dispersion relation and its reductions 

We consider the situation in which semiconductor half-space is in contact (or loaded) with 

viscous inviscid liquid. Upon applying the required interface boundary conditions (10) at the 

solid-fluid interface  0z   and subsequently requiring non-trivial solution of the resulting 

coupled equations, after lengthy but straight forward algebraic reductions and simplifications, the 

secular dispersion relation for Rayleigh surface waves is obtained as 
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In case of relaxation type semiconductor life time and relaxation time are comparable   n
n tt  and 

consequently 
n  gets modified. In general, the characteristic roots )3,2,1( imi  are complex and as 

we are considering surface waves only, so without loss of generality we choose only that form of im and i  

which satisfies the radiation condition required for the boundedness of the solution. Hence the solution is a 

superposition of the plane waves attenuating with depth. 

 

Derivation of dispersion relation and its reductions 

We consider the situation in which semiconductor half-space is in contact (or loaded) with 
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solid-fluid interface  0z   and subsequently requiring non-trivial solution of the resulting 
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In case of relaxation type semiconductor life time and 
relaxation time are comparable ( )+= n

n tt  and consequently 
∗
nτ  gets modified. In general, the characteristic roots 

)3,2,1( =imi  are complex and as we are considering 
surface waves only, so without loss of generality we choose 
only that form of im and iγ  which satisfies the radiation 
condition required for the boundedness of the solution. 
Hence the solution is a superposition of the plane waves 
attenuating with depth.

Derivation of dispersion relation and its reductions
We consider the situation in which semiconductor half-

space is in contact (or loaded) with viscous inviscid liquid. 
Upon applying the required interface boundary conditions 
(10) at the solid-fluid interface ( )0=z  and subsequently 
requiring non-trivial solution of the resulting coupled 
equations, after lengthy but straight forward algebraic 
reductions and simplifications, the secular dispersion relation 
for Rayleigh surface waves is obtained as
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Solution of secular equation  

The characteristic roots  3,2,1, im ii   given by equation (14) are in general complex and therefore, 

the wave number and hence, phase velocities of the waves are complex quantities. Therefore, the waves 

are attenuated in space.  

If we write                  

(18)

Here 32 , LL  can be obtained from 1L  by replacing the 
subscripts permutation (2, 3) with (1, 3), (1, 2), respectively. 
The secular equation (17) governs the motion of modified 
guided elasto-thermodiffusive (ETN) Rayleigh (Stoneley) 
waves in the instant analysis. It contains complete information 
about the phase velocity, attenuation coefficient and other 
characteristics of the ETN surface waves in a thermoelastic 
semiconductor half-space loaded with liquid layer of finite 
thickness with varying temperature. 
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Solution of secular equation 
The characteristic roots ( )3,2,1, =im ii γ  given by 

equation (14) are in general complex and therefore, the wave 
number and hence, phase velocities of the waves are complex 
quantities. Therefore, the waves are attenuated in space. 

If we write 

QiVc 111 −−− += ω 	 (20)

so that ,k R i Q R
V
ω

= + =  where V  and Q  are real. The 
exponent in the plane wave solution (11) becomes

( ) xQtVxiR −− , which shows that V  is the propagation speed 
and Q  the attenuation coefficient of the waves. Upon using 
equation (20) in secular equation (17) and other relevant 
relations, the values of phase speed ( )V and attenuation 
coefficient ( )Q  for the propagation of Rayleigh waves can be 
obtained for different values of the wave number ( )R . The 
secular equations (17) and (19) being algebraic equations in 
the case of leaky waves and transcendental equations for 
non-leaky are of the form ( ) 0,,, =QVRmf . For known 
values of m  these equations can be solved to compute phase 
velocity ( )V and attenuation coefficient ( )Q  for fixed values 
of wave number ( )R  and given 00 , QQVV == . We 
shall use functional iteration method to solve the secular 
equations for phase velocity ( )V  and attenuation coefficient 
( )Q  for different values of wave number ( )R  and procedure 

adopted is outlined below. 
The functional iteration method to solve of an equation 

of the form ( ) 0=Vg , requires to put this equation in the 
form ( )VFV = , so that the sequence { }nV  of iterations for 
the desired root can be easily generated as follows. If 0VV =  
be the initial approximation to the root, then we have 

( ),01 VFV = ( ),12 VFV =  ( ),23 VFV =  and so on. In 
general, ( ) ..3,2,1,0,1 ==+ nVFV nn  If  for all

IV ∈ , then the sequence { }nV of approximations to the 
root will converge to the actual value aVV =  of the root, 
provided IV ∈0 . Here I  is the interval in which roots is 
expected. For initial values of 0VV =  and 0QQ = , the 
values of ( )3,2,1, =im ii γ  can be obtained from equation 
(13) and then these values are further used in secular 
equations (17) and (19) to obtain current values of V and Q  
which are then used to generate a new approximation until or 
unless the sequence of iterations to the values of V  or Q  
converges to the desired level of accuracy. That is the 
condition  being arbitrarily small number to 
be selected at random in order to achieve the accuracy level, 
is required to be satisfied. This process is continuously 
repeated for different values of wave number ( )R  to obtain 
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phase velocity ( )V  and attenuation coefficient Q . Consequently, 
the specific loss of energy (SL) and relative frequency shifts 
(RFS) can also be computed. The specific loss is the rate of 

energy dissipation 
W
W∆  in a stress cycle of the specimen 

when the strain is maximal. It is given by ( )
( )

Im
4

Re
kW

W k
π
 ∆

=   
 

, 

k being complex. Here, we have  	     

Numerical results and discussions
In this section, we present some numerical results in order 

to illustrate the analytical developments carried out in the 
previous sections. To understand the interactions of various 
fields in thermoelastic semiconductors, the non-dimensional 
phase velocity ( )V , attenuation coefficient ( )Q  and specific loss 
factor of energy dissipations ( )κ  of ETN-surface wave modes 
under different situation have been obtained and computed 
numerically for semiconductor half-space loaded with thermally 
conductive liquid. The secular equations (17) and (19) have 
been solved numerically by using fixed point iteration 
technique. The materials chosen for this purpose is Germanium 
(Ge) and Silicon (Si), the physical data for which is given in 
Tables 1. The fluid loading is considered to be ideal water (H2O) 
and heavy water (D2O) for the purpose of numerical 
computations whose physical data is given in Tables 2, 3

Table 1. Physical data of germanium (Ge) and silicon (Si) 
semiconductor materials 
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Table 1.  Physical data of germanium (Ge) and silicon (Si) semiconductor materials  

Physical   
Quantities 

Units 

 

Ge Si References 

  Nm-2 111048.0   111064.0    

  Nm-2 111053.0   111065.0    

  Kgm-3 3103.5   3103.2    


nt  s 510  6104.1   [6] 


pt  s 510  510   

nD  m2s-1 2105.0   21035.0    

pD  m2s-1 2105.0   210125.0    

00 pn   m-3 2010  2010   

n  sm /2  3104.3   2101   [20] 

p  sm /2  3103.1   3105.1    

K  Wm-1K-1 60  150   

eC  JKg-1K-1 310  700  [21] 

T  K-1 6108.5   6106.2    

nqm  vk-1 610004.0  5104.1   [22] 

qnm  vk-1 610004.0  5104.1    

 

Table 2. Physical data for inviscid fluid (H2O) and viscous fluid (D2O)
Physical 
Quantities Units H2O D2O References

Lρ Kgm-3 103 1104.36 [23]
or

Lc ms-1 1500 1500 [24]

Lµ Nm-2s 0.0 1.0

KL Wm-1k-1 0.686 0.636 [25]

Table 3. Specific heat of water at constant volume for different 
temperatures

0 15 35 50 100

1.008 1.00 0.997 0.998 1.006

Figure 2 shows the variation of phase velocity with 
thermal conductivity ratio ( )k  at life time =+

nt 1ps and 0.1ps 
when germanium (Ge) semiconductor half-space is loaded 
with thermal conductive viscous or inviscid liquid. It is 
observed that considerable changes that occur in phase 
velocity are for relatively narrow interval of thermal 
conductivity ratio ( ) .10 ≤≤ k  It is found that the magnitude of 
phase velocity ( )V  increases uniformly with thermal 
conductivity ratio ( ) .k  The behaviour of dispersion curves for 
generalized Rayleigh Stoneley waves, in both viscous / inviscid 
liquid loadings is found to be similar except that the 
magnitude of phase velocity of latter is quite large as 
compared to that of former one. It is also observed that the 
magnitude of the phase velocity increases with increasing life 
time of charge carrier field in case of both inviscid and viscous 
liquid loadings. Figure.3 shows the variations of attenuation 
coefficient ( )Q  with thermal conductivity ratio ( )k  for life 
times =+

nt 1ps and 0.1ps when semiconductor is loaded with 
thermally conducting viscous or inviscid liquid. It is noticed 
that for both viscous and inviscid liquid, the attenuation 
decreases exponentially with thermal conductivity ratio ( )k . 
The magnitude of attenuation is found to be higher in case of 
viscous liquid than that for inviscid liquid loading. 

Figure 4 shows the variations of specific loss factor of 
energy dissipation ( )κ  with thermal conductivity ratio ( )k  at 
life times =+

nt 1ps and 0.1ps. From Figure. 4, it is observed 
that the specific loss factor increases monotonically with 
thermal conductivity ratio ( )k  up to 0.2 thereafter it become 
constant. However, the magnitude of specific loss factor of 
energy dissipation ( )κ  for viscous liquid is found to be quite 
large than that in case of inviscid liquid loading. Figure 5 
shows the variations of phase velocity of surface waves with 
wave number )(R  at different life times in the case of inviscid 
or viscous liquid loadings. The considerable changes of phase 
velocity are noticed to occur within relatively narrow interval 
of wavenumber )(R . It is found that the magnitude of phase 
velocity (V) decreases in the wave number range 2.00 ≤≤ R  
before it becomes steady and uniform for 2.0≥R , at life times 

=+
nt 1ps and 0.1ps. 

Figure 6 shows the variation of attenuation coefficient (Q) 
of generalized Rayleigh waves with wave number for different 
life times of semiconductor loaded with thermally conducting. 
It is revealed that the attenuation coefficient (Q) increases 
linearly for wave number interval 4.00 ≤≤ R  and after

4.0≥R it becomes constant in case of viscous liquid loading. 
It is noticed that for inviscid liquid loading, the attenuation first 
increases in the range  and then decreases 
monotonically for . The magnitude of attenuation 
coefficient (Q) in case of viscous liquid is found to be quite 
large as compared to inviscid fluid loading. This is attributed to 
the fact that when a wave travel along the interface, the fluid in 
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immediate contact with the solid is at rest and subsequent 
layers of fluid may have a velocity that increases with increasing 
depth from the solid surface. The velocity gradient causes an 
internal stress associated with viscosity that leads to loss of 
momentum and this loss of momentum results in decrease of 
amplitude (attenuation) of the wave close to the surface. Figure 
7 shows the variations of specific loss factor of energy 
dissipation ( )κ  with wave number )(R at life times =+

nt 1ps 
and 0.1ps. The Figure. 7 revealed that the specific loss factor of 
considered waves first decreases in the interval  
and then increases monotonically with increasing wave number 
for , at all considered values of life times. 

Figure 8 presents the variation of phase velocity with 
thermal conductivity ratio ( )k  at life times =+

nt 1ps and 0.1ps 
in a silicon (Si) semiconductor loaded with thermally 
conducting viscous or inviscid, liquid.

Figure 2. Effect of life time on the phase velocity of RW versus 
thermal conductivity ratio in semiconductor (Ge) half-space. 

Figure 3. Effect of life time on the attenuation of RW versus 
thermal conductivity ratio in semiconductor (Ge) half-space. 

Figure 4. Effect of life time on the Specific loss of RW versus 
thermal conductivity ratio in semiconductor (Ge) half-space. 

Figure 5. Effect of life time on the Phase velocity of RW versus 
wave number in semiconductor (Ge) half-space.

Figure 6. Effect of life time on the attenuation of RW versus wave 
number in semiconductor(Ge) half-space. 
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Figure 7. Effect of life time on the Specific loss of RW versus wave 
number in semiconductor (Ge) half-space. 

It is noticed that the considerable changes of phase 
velocity that occur are within relatively narrow interval of 
thermal conductivity ratio ( ) 10 ≤≤ k . It is found that the 
magnitude of phase velocity ( )V  for thermally conducting 
fluids both inviscid and viscous increases uniformly with 
thermal conductivity ratio ( )k . The behaviour of dispersion 
curves of generalized Rayleigh waves in case of both viscous 
and inviscid liquid loadings is found to be similar except that 
the magnitude of phase velocity in latter case is quite large as 
compared to that former one. It is also observed that the 
magnitude of the phase velocity is found to increase with 
increase in life time of charge carrier fields for both inviscid 
and viscous liquid loadings.

Figure 9 shows the variation of attenuation coefficient 
( )Q  with thermal conductivity ratio ( )k  at life times =+

nt 1ps 
and 0.1ps in silicon (Si) semiconductor half-space loaded with 
thermally conducting viscous or inviscid liquid. It is noticed 
that the attenuation decreases exponentially with thermal 
conductivity ratio ( )k  for both viscous and inviscid liquid 
loadings. The magnitude of attenuation in case of viscous 
liquid is found to be quite large as compared to that of 
inviscid liquid loading. 

Figure 10 shows the variations of phase velocity of 
generalized Rayleigh waves with wave number )(R  at different 
life times in the case of inviscid or viscous liquid loading. 
Considerable changes of phase velocity that occur have been 
observed within relatively narrow interval of wave number

)(R . It is found that the magnitude of phase velocity (V) 
decreases in the wave number range 2.00 ≤≤ R  before it 
becomes steady and uniform 2.0≥R , at life time =+

nt 1ps 
and 0.1ps in a silicon (Si) semiconductor half-space is loaded 
with thermally conducting viscous and inviscid liquid. Figure 
11 represents the variation of attenuation coefficient (Q) of 
considered waves with wave number at different life times in 
silicon (Si) semiconductor loaded with liquids. From Figure 11, 
it is observed that in case of viscous liquid loading, the 
attenuation coefficient (Q) increases linearly with wave 
number. It is noticed that for inviscid liquid loading, the 
attenuation first increases linearly for  and then 

increases monotonically in the wave number range . 
It is also formed that the magnitude of attenuation coefficient 
(Q) in case of viscous liquid loading is found to be quite large 
than inviscid. 

Figure 8. Effect of life time on the Phase velocity of RW versus 
thermal conductivity ratio in semiconductor (Si) half-space.

Figure 9. Effect of life time on the attenuation of RW versus 
thermal conductivity ratio in semiconductor (Si) half-space. 

 
Figure 10. Effect of life time on the Phase velocity of RW versus 

wave number in semiconductor (Si) half-space. 
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Figure 11. Effect of life time on the attenuation of RW versus wave 
number in semiconductor (Si) half-space. 

Conclusions
In this paper we have introduced the effect of thermally 

conducting fluid, both inviscid and viscous, loadings on the 
characteristics of generalized Rayleigh waves in a n-type 
semiconductor propagating along solid-liquid interface. It is 
found that the fluid layer in contact with semiconductor 

causes significant changes in phase velocity, attenuation and 
specific loss of generalized Rayleigh waves. The behaviour of 
dispersion curves for both types of liquid loadings is found to 
be of similar nature expect that the magnitudes of phase 
velocity, attenuation and specific loss for inviscid liquid 
loading is quite larger than their counterparts in case of 
viscous one. This may be due to adhesive forces at solid-
liquid interface and liquid density, the energy dissipation is 
more in viscous liquid as compared to inviscid liquid loading. 
The attenuation caused by liquid loading is attributed to the 
combined effects of radiation losses due to energy leakage 
into the liquid and dissipative losses because of viscous 
friction at the interface. It may be contribution of its 
dependence on surface roughness, viscosity and density of 
the liquid. The magnitude of specific loss factor is found to be 
more in case of viscous liquid. It is also noticed that magnitude 
of phase velocity in case of silicon semiconductor material 
with thermal conductivity ratio ( )k  and wave number )(R  is 
found to be large than that for germanium semiconductor 
material.
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Figure11. Effect of life time on the attenuation of RW versus wave number in semiconductor (Si) half-

space.  
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loadings on the characteristics of generalized Rayleigh waves in a n-type semiconductor propagating along 

solid-liquid interface. It is found that the fluid layer in contact with semiconductor causes significant 

changes in phase velocity, attenuation and specific loss of generalized Rayleigh waves. The behaviour of 

dispersion curves for both types of liquid loadings is found to be of similar nature expect that the 
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The quentatities used in equations (17) and (19) are given by 

2121121 )(])1()1[( RTTRTCTD   

)( 2332 RRm    ,  )( 5433 RRm     ,   )( 2324 RRm    , )( 5425 RRm   

6236 )( Rmm    ,   )( 2317 RRm    ,    )( 5418 RRm   ,  6139 )( Rmm   

61210 )( Rmm   

322
2

*22
3

3
2*

32
2

2

2

1 )
22

)(
2

)(()
2

)(1()1)(
2

( T
k
pTpk

Ak
TkpATTkp

q
pR 








 

)21)(
2

()1(

)
2

)1()
2

1((
2

)(
)

2
1(

*2*

2

2

2

2

32
2

3232

*22
3

32
2*

2

p
AkpA

q
p

q
pTTkD

TpTDT
k
pAk

T
k
pkAR













 

]
2

)1()
2

)[(21(

])
2

)((
2

)
2

[()1()
2

1]()1
2

)(()1[(

2
*

22

2*2

3
2

*22
3

22

2

22
*32

22
3

32
2

3

k
pATp

q
p

p
Ak

TkAk
k
pp

q
pTD

k
pATTkTTkR


















]
2

)1()
2

)[(21(

])
2

)((
2

)
2

[()1()
2

1]()1
2

)(()1[(

2
*

12

2*2

3
2

*22
3

22

2

12
*31

22
3

31
2

4

k
pATp

q
p

p
Ak

Tk
Ak

k
pp

q
pTC

k
pA

TTk
TTkR


















)21)(
2

()1(

)
2

)1()
2

1((
2

)(
)

2
1(

*2*

2

2

2

2

31
2

12
3

*22
3

32
2*

5

p
AkpA

q
p

q
pTTkC

pTC
k
pTAk

T
k
pkAR













 

)21)(
2

()
2

)(
)(

2
1(

*2

2

2

3
2

*22
3

26 p
Akp

q
pTk

Ak
k
pR 







 

 23321 QPQPL    ,    

13312 QPQPL      ,     

12213 QPQPL     

)( 23321 WQWQM   

)( 31132 WQWQM       

)( 21123 WQWQM    

)( 23321 WPWPN   

)( 31132 WPWPN       

)( 21123 WPWPN   

22  kp  , 2

2




 L
L   ,   

  3;2,1,tanh
 idT

i

i
i 


  

2
 LLiA     ,    

p
kAC L )2(2 22

1 


 
 ,   

p
kAD L )2(2 22

2 


 
 

   3,2,1,  iSmhWmP iin
nq

iii   

   3,2,1,'  iWmSmhQ ii
qn

iinqni                                                 

31

2

0 )(1 TT
p

kpA L   



Madridge Journal of Nanotechnology & Nanoscience

177Madridge J Nanotechnol Nanosci
ISSN: 2638-2075

Volume 5 • Issue 1 • 1000133

]
2

)1()
2

)[(21(

])
2

)((
2

)
2

[()1()
2

1]()1
2

)(()1[(

2
*

22

2*2

3
2

*22
3

22

2

22
*32

22
3

32
2

3

k
pATp

q
p

p
Ak

TkAk
k
pp

q
pTD

k
pATTkTTkR


















]
2

)1()
2

)[(21(

])
2

)((
2

)
2

[()1()
2

1]()1
2

)(()1[(

2
*

12

2*2

3
2

*22
3

22

2

12
*31

22
3

31
2

4

k
pATp

q
p

p
Ak

Tk
Ak

k
pp

q
pTC

k
pA

TTk
TTkR


















)21)(
2

()1(

)
2

)1()
2

1((
2

)(
)

2
1(

*2*

2

2

2

2

31
2

12
3

*22
3

32
2*

5

p
AkpA

q
p

q
pTTkC

pTC
k
pTAk

T
k
pkAR













 

)21)(
2

()
2

)(
)(

2
1(

*2

2

2

3
2

*22
3

26 p
Akp

q
pTk

Ak
k
pR 







 

 23321 QPQPL    ,    

13312 QPQPL      ,     

12213 QPQPL     

)( 23321 WQWQM   

)( 31132 WQWQM       

)( 21123 WQWQM    

)( 23321 WPWPN   

)( 31132 WPWPN       

)( 21123 WPWPN   

22  kp  , 2

2




 L
L   ,   

  3;2,1,tanh
 idT

i

i
i 


  

2
 LLiA     ,    

p
kAC L )2(2 22

1 


 
 ,   

p
kAD L )2(2 22

2 


 
 

   3,2,1,  iSmhWmP iin
nq

iii   

   3,2,1,'  iWmSmhQ ii
qn

iinqni                                                 

31

2

0 )(1 TT
p

kpA L   

]4)(2))(())(2([1 2
31

222
131

22
3

2
3

22
3

2
21 pkTTkkpTTkpkTkkp

p
A L  

 

]4))((2[1 4
31

22
3

22
1

2
22 kTTkkk

p
A    

1
3

231
2

0 }
2

)
2
1

4
{()1( TT

k
pTTkB L 





           

12
2

31

22
3

21
3

2
2
1

2
1 )

2
1

4
(2)

2
)(1

2
(2}

2
)

2
1

4
){(( T

k
pkTT

k
k

T
T

k
pkB L





 








  

)
2

))((
1( 2

31
22

3
22

1
3 k

TTkk
B





 

  pTkkpC  3
22

0 22    

    )2(2 222
3

2
1 kkpkC       

   )}()){(()}()({ 32321221212311 PPQQmmQQPPmmPQF nnn          

23321 QPQPL   

     3,2,1,'  iSmhWmhP iin
nq

iiTi   

     3,2,1,''  iSmhWmhQ iinqnii
qn

nTi   

 

 

 

 

References 
1. Graff  KF. Wave motion in elastic solids.  Dover, New York (1991). 

 

2. Nowacki W. Dynamic problems of thermoelasticity, Noordoff, Leyden, The Netherlands 

1975. 

 

3. Maruszewski B. Electro-magneto-thermo-elasticity of extrinsic Semiconductors classical 

irreversible thermodynamic Approach. Arch Mech. 1986a; 38: 71-82.  

 

4. Maruszewski B. Electro-magneto-thermo-elasticity of extrinsic semiconductors, extended 

irreversible thermodynamic Approach. Arch. Mech. 1986b; 38: 83-95 

 

References
1.	 Graff KF. Wave motion in elastic solids. Dover. New York; 1991.

2.	 Nowacki W. Dynamic problems of thermoelasticity, Noordoff, Leyden, 
The Netherlands 1975.

3.	 Maruszewski B. Electro-magneto-thermo-elasticity of extrinsic Semiconductors 
classical irreversible thermodynamic Approach. Arch Mech. 1986a; 38: 71-82. 

4.	 Maruszewski B. Electro-magneto-thermo-elasticity of extrinsic semiconductors, 
extended irreversible thermodynamic Approach. Arch Mech. 1986b; 38: 83-95

5.	 Maruszewski B. Coupled evolution equations of deformable semiconductors. 
Int J of Eng Scie. 1987a; 25(2): 145-153. doi: 10.1016/0020-7225(87)90002-4

6.	 Maruszewski B. Thermodiffusive surface waves in semiconductors. J 
Acoust Soc Am. 1989; 85(5): 1967-1977. doi: 10.1121/1.397850

https://www.sciencedirect.com/science/article/abs/pii/0020722587900024
https://asa.scitation.org/doi/abs/10.1121/1.397850?journalCode=jas


Madridge Journal of Nanotechnology & Nanoscience

178Madridge J Nanotechnol Nanosci
ISSN: 2638-2075

Volume 5 • Issue 1 • 1000133

7.	 Maruszewski B. Heat and charge carrier relaxation in deformable 
semiconductors, in electro magneto-mechanical interactions in 
deformable solids and structures, edited by Yamamo Y. to and Miya K. 
(Northland, Amsterdam) 1987b.

8.	 Sharma JN, Thakur N. Plane harmonic elasto-thermodiffusive waves in 
materials. J Mech Mater and Struct. 2006; 1: 813-835.

9.	 Sharma JN, Thakur N, Walia V. Propagation of thermoelasto-diffusive 
surface acoustic waves in semiconductor materials. Asian J Chem. 
2006; 18(5): 3329-3334. 

10.	 Sharma JN, Thakur N. Propagation of thermoelasto-diffusive surface acoustic 
waves in semiconductor materials. J Therm Stresses. 2007; 30: 357-380.

11.	 Sharma JN, Sharma I, Chand S. Elasto-thermodiffusive surface waves 
in a semiconductor material half-space underlying a fluid with 
varying temperature. J Therm Stresses. 2008; 31: 956-957. doi: 
10.1080/01495730802250524

12.	 Sharma I, Sharma JN, Chand S. A coustodiffusive Rayleigh waves in a 
semiconductor materials half space in contact with fluid medium. 
Proc Natl Acad Sci India Sect. A. 2009; 79: 280-289.

13.	 Sharma JN, Sharma I, Chand S. Acousto thermodiffusive interfacial 
waves in a semiconductor loaded with viscous fluid. J Appl Math Mech. 
2010; 6(3): 21-42.

14.	 Sharma J.N., Sharma A. Reflection of acoustodiffusive waves from the 
boundary of a semiconductor half-space.  J Appl Phys. 2010; 108: 
033712-033723.

15.	 Sharma A, Sharma JN, Sharma YD. Modelling Reflection and 
Transmission of Acoustic Waves at a Semiconductor: Fluid Interface. 
J Adv Acoust Vib. 2012; 1-10. doi: 10.1155/2012/637912

16.	 Sharma I. Effect of liquid loading lamb wave in a semiconductor 
materials plate. J Appl Math Mech. 2014; 10(10): 50-73. 

17.	 Kansh PL, Bartiaans GJ. Piezoelectric crystal as detector in liquid 
chromatography. Anal  Chem. 1980; 52(12): 1929-1931. doi: 10.1021/
ac50062a033

18.	 Josse F, Shana Z, Radtke DE, Haworth DT. Analysis of Piezoelectric Bulk-
Acoustic -Wave Resonators and detectors in viscous conductive liquid. 
EEE Trans Ultrason Ferroelectr Freq Control. 1990; 37: 359-368.

19.	 Many A, Goldstein J, Grover NB. Semiconductor Surfaces: North-
Holland: Amsterdam 1965. 

20.	 Zambuto M. Semiconductors devices. Mcgraw-Hill Book Company. New 
York; 1989.

21.	 Sze SM. Physics of Semiconductors Devices. A Wiley-Intersciences 
Publication, John Wilky and Sons, New York; 1981.

22.	 Lal S. Fundamental Physics, S. Vikas and Co., Educational Publishers, 
New Delhi 1995.

23.	 Nakamura M, Tamura K, Murakami S. Isotope effects on thermodynamics 
properties: Mixtures of x D O or H O x CH CN 2 2 3 ( ) + (1−) at 298.15. 
Thermochim Acta. 1995; 253: 127-136. 

24.	 Cengel YA, Cimbala JM. Fluid Mechanics. Tata McGrW-Hill, New Delhi; 
2006.

25.	 Crabtree A. Siman-Tov M. Thermo physical properties of saturated light 
and heavy water for advanced neutron source applications. Oak Ridge 
National Laboratory managed by Martin Marietta energy systems, INC. 
U.S. Department of energy 1993.

https://www.researchgate.net/publication/286907946_Propagation_of_thermo-elastodiffusive_surface_acoustic_waves_in_semiconductors
https://www.researchgate.net/publication/286907946_Propagation_of_thermo-elastodiffusive_surface_acoustic_waves_in_semiconductors
https://www.tandfonline.com/doi/abs/10.1080/01495730802250524
https://www.tandfonline.com/doi/abs/10.1080/01495730802250524
https://www.tandfonline.com/doi/abs/10.1080/01495730802250524
https://www.hindawi.com/journals/aav/2012/637912/
https://www.hindawi.com/journals/aav/2012/637912/
https://pubs.acs.org/doi/10.1021/ac50062a033
https://pubs.acs.org/doi/10.1021/ac50062a033

