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Abstract
A mitochondrion is a double-membrane-bound organelle found in most eukaryotic 

cells its primary function is to generate adenosine triphosphate, (ATP) which is utilized 
as a source of chemical energy by the organism. Lately in addition to generating ATP, 
they are involved several other functions according the requirement of the cell. In this 
review we described their role in proliferation, differentiation, information transfer, 
apoptosis and role in therapeutics. Since they have their own DNA they also take part in 
protein synthesis; part of the key enzyme-, Succinic- dehydrogenase-is synthesized 
under mitochondrial genome. Mitochondrial myopathies are a group of neuromuscular 
disease caused by damage of the mitochondria with some examples including Kearns-
Sayre Syndrome (KSS), Leigh’s syndrome, Mitochondrial Depletion Syndrome (MDS), 
Mitochondrial ephalomyopathy, Lactic Acidosis and Stroke-like episodes (MELAS). 
Scientist took advantage of the fact that in all human population mitochondria comes 
from mother only and therefore they could trace of human origin and then migration. 
Lately, Mitochondrial replacement therapy and Mitochondrial diffusion therapies were 
developes and treated rere diseases which had no treatment prior to this development.

Keywords: Porin proteins; Adenosine triphosphate (ATP); Information transfer; Apoptosis, 
Mitochondrial myopathies; Mitochondrial replacement therapy and Diffusion therapies.

Introduction
Mitochondria semi autonomous organelle lodged in almost all eukaryotic cells 

outside of the nucleus; present in few numbers to several thousand per cell. Mitochondria 
are spherical, double-membrane-bound organelle with specific function for their 
membranes. Mitochondrial outer membrane permeability is conferred by a family of 
porin proteins. Mitochondrial porins conduct small molecules and constitute one 
component of the permeability transition pore that opens in response to apoptotic 
signals [1]. The porins in the outer membrane allow the passage of molecules smaller 
than 5 kilodaltons besides the large multiprotein translocase complex that recognizes 
mitochondrial signal sequences on larger proteins and permits their passage. The 
matrix, located inside the inner membrane has mitochondrial DNA (mtDNA) [2].

The tissue with increased energy demand has more mitochondria (for e.g. heart muscle 
cells). Also the inner membrane of the organelle has many folds in the form of finger like 
processes the cristae, in places to increase the surface area for energy production [3]. 

Endo symbiosis theory claims mitochondria to have evolved from purple bacteria 
approximately 1.5 billion years ago [4]. Chloroplasts in plant cells are the only cell 
organelles with DNA though generally this genetic molecule is found in the nucleus 
having striking similarities to bacteria cells. Recently it has been proved that mitochondria 
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are also involved in many other functions in addition to 
energy production to meet the cellular demand. This 
“powerhouse” of the cell manufactures ATP and other 
metabolites, is also a “sentinel” organelle capable of both 
detecting cellular insults and orchestrating inflammatory 
responses [5]. 

Inheritance of mitochondria to the progeny is through 
mother and, thus, can be traced back to a single female 
ancestor. The maternal ancestor of all living humans confirms 
that “Mitochondrial Eve” lived about 200,000 years ago. The 
DNA in the mitochondria is solely from the ooplasm and not 
from the sperm and so mtDNA is matrilineal [6-9]. It is 
interesting to note that pattern of human migration can be 
traced due to mtDNA mutation [10]. 

The mtDNA is neither enveloped nor packaged into 
chromatin. Both mitochondria and chloroplast use their DNA 
to produce many proteins and enzymes required for their 
function [11].

Therefore, the aim of this review is to discuss current 
knowledge of how mitochondrial structure can be modulated 
and coordinated across different spatial scales to support cells 
facing diverse functional demands. Highlighting how 
mitochondrial structure is tightly regulated within a cell, we focus 
on the functional tradeoffs associated with structural alterations 
within a mitochondrion, at the single organelle and mitochondrial 
network levels, and between mitochondria and other organelles 
which contribute to cellular functional specificity.

Functions in additional to energy production
Proliferation, differentiation, information transfer, 

apoptosis and role in therapeutics are additional involvement 
by the mighty mitochondria. In order to achieve these functions, 
the mitochondria need to move to the corresponding location 
inter and intracellular. This transcellular transfer of mitochondria 
is dynamically involved in the cellular and tissue response to 
CNS injury and play beneficial roles in recovery [12]. 
Mitochondria primarily move by the action of molecular motors 
along cytoskeletal elements. Like other organelles, mitochondria 
associate with specific motor isoforms through organelle-
specific adaptors, and their movement is sensitive to disruption 
of these motors and adaptor proteins [13]. Therefore, 
mitochondrial movement has a crucial role in normal 
physiologic activity, and any disorder in the movement will 
cause irreparable damage to the organism.

Human life span could be associated with the life length 
of the mother but not the father, suggesting an influence of 
the maternal inherited mitochondrial genome [14]. Therefore, 
mitochondria-associated disease mutations are also always 
inherited maternally.

Human circular mtDNA was the first significant part of the 
human genome sequenced and was shown that it contains 
16,569 base pairs 37 mitochondrial (mt) genes including 13 
coding for essential components of the mitochondrial 
electron transport chain and of the ATP synthase complex, 22 
for mitochondrial transfer RNAs and 2 for ribosomal RNAs. 
mtDNA codes for the genetic information required by 

mitochondria whereas nuclear DNA is encoded for the genetic 
information required by the entire cell [15,16]. One 
mitochondrion contains dozens of copies of its mitochondrial 
genome in contrast to one copy of its nuclear genome [2]. It 
is found that 3% of the mitochondrial genome is non coding 
compared to 93% of the nuclear genome. Some mitochondrial 
coding sequences (triplet codons) do not follow the universal 
codon usage rules when they are translated into proteins. The 
same nucleotide can sometimes function as both the last 
base of one gene and the first base of the next gene thereby 
bases exhibiting functional overlap between two genes in 
mitochondria. Mitochondrial genes on both DNA strands are 
transcribed in a polycistronic manner [17]. Large mitochondrial 
mRNAs contain the instructions to build many different 
proteins, which are encoded one after the next along the 
mRNA differing from nuclear genes which are usually 
transcribed one at a time from their own mRNA. The 
dysfunction of any type is observed to be the causal factor for 
the development of many medical problems. The mtDNA is 
more susceptible to damage than the rest of the genome due 
to the free radicals produced during ATP synthesis [2]. 

The mitochondria contain over 100 components of the 
respiratory chain, 13 of which are coded by mtDNA, the 
remaining being encoded by nuclear DNA physically interlocked 
like pieces of a jigsaw. The data of the study also provided a 
clue that genetic variants in mtDNA passed to offspring could 
increase the risk of developing different conditions, as well as 
influence characteristics such as height and lifespan [18]. 
Genetic longevity studies provides enough evidence for life 
length could be associated with the life length of the mother 
but not the father, suggesting an influence of the maternal 
inherited mitochondrial genome entire life-course of individuals 
in humans [14]. Therefore, mitochondria-associated disease 
mutations are also always inherited maternally. mtDNA is a 
proper tool for the determination of the origin of populations 
due to its high evolutionary importance. Ancient mitochondrial 
DNA retrieved from museum specimens, archaeological finds 
and fossil remains can provide direct evidence for population 
origins and migration processes [19]. 

Protein synthesis
Mitochondria are no longer known simply as the 

powerhouse of the cell as they have now been shown to play 
a key part in several cellular processes including metabolite 
biosynthesis beyond their classical role in energy metabolism. 
While it is becoming increasingly well established that 
mitochondrial protein composition can vary largely among 
different cell types [20-24] as well as how mitochondrial 
structural alterations contribute to the wide range of 
mitochondrial functional capacities observed in different cells 
is less well understood. In the rabbit heart three days before 
birth, the matrix makes up 48% of mitochondrial volume 
while the inner boundary membrane + cristae take up 39%. 
However, two days after birth, the transition to more aerobic 
metabolism results in a redistribution of mitochondrial 
volume where the inner membrane and cristae occupy more 
volume than the matrix (47 vs. 42%, respectively) [25]. 

https://www.nature.com/scitable/topicpage/DNA-Packaging-Nucleosomes-and-Chromatin-310
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In support of this increased cellular synthesis demand, 
the mitochondria in the liver have a relatively greater capacity 
for metabolite biosynthesis and lower energy conversion 
capabilities compared to striated muscle mitochondria 
[21,26]. Using histochemical techniques for the first time in 
Bufo by Ward [27] presented evidence for the origin of protein 
crystals within a single crista in some oocyte mitochondria. 
Later Gupta [28] also showed protein yolk synthesis in 
invertebrate oocytes. In Neurospora crassa mitochondria 
takes part in the synthesis of one subunit of the succinic 
dehydrogenate enzyme [29]. 

Mitochondrial DNA mutation (mtDNA) and its significance 
Mutation rate of mtDNA is 100 fold than the nuclear 

genome resulting in the presence of heterogeneous population 
of mtDNA within the same cell, and even within the same 
mitochondrion. During cell division daughter cells receive 
similar, but not identical, copies of their mtDNA. A nuclear 
gene, called DNA polymerase gamma (POLG), encodes the 
DNA polymerase responsible for replicating the mitochondrial 
genome. This enzyme with two domains: a catalytic domain 
that exhibits polymerase activity, and an exonuclease domain 
that is involved in the recognition and removal of DNA base-
pair mismatches that occur during DNA replication. The higher 
mutation rate is correlated with a nucleotide imbalance that 
leads to decreased (POLG), fidelity [30]. 

Mutations of any type in mtDNA lead to a subtle 
differences in our ability to produce energy. These differences 
in the power house of the cell affect various complex biological 
pathways inside our systems, where the signals that allow our 
cells to operate in a coordinated fashion. The functions of this 
organelle are critical to cell survival in a variety of ways. For 
instance, they help in storage of calcium ions as well as 
calcium transport and signalling [31,32]. 

The role of mitochondria in the defence mechanism is 
significant. When a macrophage engulfs bacteria, it triggers a 
stress pathway in the endoplasmic reticulum which in turn 
stimulates mitochondria to produce reactive oxygen species 
(ROS) which are packaged into vesicles and shuttled to the 
phagosome. The damaging molecules are thought to aid in 
killing the pathogen. Finally, the left over particles of the 
bacterium are degraded once the phagosome fuses with a 
lysosome [33]. Due to the presence of DNA as shown by 
staining technique, protein synthesis is also possible within 
the mitochondria as discuss earlier [34,35]. However, for the 
first time we have shown that one component of succinic 
dehydrogenase, the marker enzyme of the mitochondrion, is 
synthesized under nuclear genome in the cytoplasm from 
where it is translocated through endoplasmic reticulum into 
the inner membrane of the mitochondria and the synthesis 
second component of the enzyme is by mitochondrial 
genome. Thus both the nuclear genome and mtDNA involve 
together during the synthesis of the enzyme [36].

Mitochondria affect health and development 
Maintaining calcium in right concentration is indispensible 

for blood clotting [37], muscle contraction [38] and other 

important tasks. Apart from making iron compounds carry 
oxygen to tissues they are in the initial production site for 
steroid hormones including cortisol, estrogen, progesterone 
and testosterone [39]. 

Mitochondria play a central role in initiation of the 
intrinsic pathway of apoptosis by releasing mitochondrial 
proteins, which normally reside in the inter membrane space 
into the cytosol [40-42]. It has also been demonstrated that 
aging human colonic cells displaying respiratory chain 
deficiency have a significant higher apoptotic frequency 
compared to normal human colonic cells indicating that 
respiratory deficiency induces apoptosis. 

Mitochondrial myopathies are a group of neuromuscular 
disease caused by damage of the mitochondria with some 
examples including Kearns-Sayre Syndrome, Leigh’s 
syndrome, Mitochondrial Depletion Syndrome, Mitochondrial 
Encephalomyopathy, Lactic Acidosis and Stroke-like episodes 
[43-44] in humans. 

mtDNA is more susceptible to damages in comparison to 
nuclear DNA. Importantly, mtDNA molecules are not 
protected by histones and supported with only rudimentary 
DNA repair mechanism. Besides they are localized in close 
proximity to the electron transport chain, which continuously 
generates Reactive Oxygen Species (ROS). As a result mutation 
rate of mtDNA has been reported to be up to 15-fold higher 
than nuclear DNA in response to DNA damaging agents. The 
mechanisms described encompass altered production of 
mitochondrial ROS, altered regulation of the nuclear 
epigenome, affected initiation of apoptosis, and a limiting 
effect on the production of ribonucleotides and 
deoxyribonucleotides [45].

Inherited changes in mtDNA can also cause problems 
with growth, development, and function of the body’s 
systems. These mutations disrupt the mitochondria’s ability 
to generate energy efficiently for the cell. Conditions caused 
by mutations in mtDNA often involve multiple organ systems. 
The effects of these conditions are most pronounced in 
organs and tissues that require a lot of energy, such as the 
heart, brain, and muscles [44]. 

Recently it was shown that mitochondrial dysfunction in 
placental trophoblast cells prove to be a causal factor for 
gestational diabetes mellitus. This is in part complicated by 
the different mitochondrial subpopulations present in the 
two major trophoblast cell lineages of the placenta. A study 
examined key aspects of mitochondrial function in placentas 
from healthy pregnancies and those complicated gestational 
diabetes mellitus (GDM) in both whole tissue and isolated 
mitochondria. Mitochondrial content, citrate synthase activity, 
ROS production and gene expression regulating metabolic, 
hormonal and antioxidant control was examined in placental 
tissue, before examining functional differences between 
mitochondrial isolates from cytotrophoblast and 
syncytiotrophoblast. The observations indicated the 
mitochondrial dysfunction across multiple pathways when 
assessing whole placental tissue from GDM pregnancies 
compared with healthy controls [46].

https://www.nature.com/scitable/topicpage/DNA-Damage-amp-Repair-Mechanisms-for-Maintaining-344
https://www.nature.com/scitable/topicpage/DNA-Damage-amp-Repair-Mechanisms-for-Maintaining-344
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Somatic mutations in mtDNA have been associated with 
some forms of cancer and an increased risk of certain age-
related disorders such as heart disease, Alzheimer disease, 
and Parkinson disease. Accumulations of somatic mutations 
in a person’s lifetime may play a role in the normal process of 
aging. It is conceivable that mitochondrial deficiency could 
lead to mutagenesis in the nuclear genome also [47]. It is also 
possible that mutation may occur in the mitochondrial genes 
of sperm but not in the blood cells [48]. Mitochondria play a 
cyclic role in the generation of steroid hormone estrogen) 
that in turn, modulate mitochondrial activities. The impairment 
of this organelle was observed to be one of the central 
features of aging in women via neuroprotective, neurotrophic 
and antioxidant modes of action. The hypoestrogenic state in 
the peri- as well as in the prolonged postmenopause might 
increase the vulnerability of elderly women to brain 
degeneration and age-related pathologies. A number of 
recent studies link mitochondrial function to signalling 
pathways that regulate brain plasticity, life span and to the 
aging process. In this context, estrogen/ Brain derived 
neurotrophic factor (BDNF) or estrogen/ Sirtuin 3 (SIRT3) 
actions and interactions represent complex and fundamental 
mechanisms of neuronal plasticity, a process highly depending 
on energy supply via mitochondrial activity [49]. 

Somatic mutations of the mtDNA though not inherited by 
the next generation, gets accumulated over time due to their 
inability to repair it when it is damaged. Interestingly, high 
levels of mtDNA mutations have been found in many tumours 
and cancer cells [45,47,50,51].

In human, several neurodegenerative disorders are 
correlated with mitochondrial dysfunction and oxidative 
damage leading to major neuronal loss. Free radicals, typically 
generated from mitochondrial respiration, cause oxidative 
damage of nucleic acids, lipids, carbohydrates and proteins. A 
common features of toxicity observed that are related to 
oxidative damage responsible for Huntington’s disease, 
Friedreich ataxia and Xeroderma pigmentosum, provide 
insight into shared mechanisms of neuronal death [52]. In the 
case of Huntington’s disease oxidative DNA damage can 
cause pathway for repairing oxidative base lesions to expand 
trinucleotide repeats. Accumulation of oxidative mtDNA 
damage during aging is associated with Alzheimer’s disease, 
Parkinson’s disease and amyotrophic lateral sclerosis. Many 
human diseases such as muscle disuse/inactivity, diabetes, 
cancer, renal, and cardiac failure and in aging-sarcopenia are 
associated with catabolic conditions such as loss of muscle 
mass and force leading to alternation in the mitochondrial 
content, morphology and functions. Mitochondria were 
suspected to affect negatively by amyloid β peptide (Aβ), an 
important component in Alzheimer’s disease pathogenesis, a 
causal factor for mitochondrial dysfunction and oxidative 
stress. The progressive accumulation of mitochondrial Aβ is 
associated with aberrant mitochondrial functions leading to 
neuronal damage and cognitive decline Aβ is transported into 
mitochondria via the translocase of the outer membrane TOM 
import machinery localized to mitochondrial cristae [53-57]. 

Mitochondrial dysfunction has been observed in several 
of the diseases that were associated with mitochondrial single 
nucleotide variants such as multiple sclerosis, type II diabetes 
and abdominal aortic aneurysms and many syndromes [58]. 

The changes of mitochondrial network influence the 
production of ROS that play an important role in muscle 
function. Moreover, dysfunctional mitochondria trigger 
catabolic signalling pathways which feed-forward to the 
nucleus to promote the activation of muscle atrophy [59]. 

Loss of functional mitochondrial complex I (MCI) in the 
dopaminergic neurons of the substantia nigra is a hallmark of 
Parkinson’s disease. In mice model, MCI dysfunction alone is 
sufficient to cause progressive parkinsonism similar to human 
in which the loss of MCI in the dopaminergic neurons of the 
substantia nigra [60]. Multiple lines of evidence, including 
clinical, genetic, ultrastructural, and biochemical studies, 
support the involvement of mitochondria in the patho-
physiology of psychiatric illness [61].

Mitochondrial replacement therapy
The first case of suspected mitochondrial disease occurred 

during 1962, in a woman with extremely fast and efficient 
metabolism. Her muscle tissue had large size as well as more 
number of mitochondria. Subsequently, mitochondrial 
dysfunction associated with mtDNA mutations leading to 
diseases, including seizure, ataxia, cortical blindness, dystonia, 
exercise intolerance, ophthalmoplegia, optic atrophy, 
cataracts, diabetes mellitus, short stature, cardiomyopathy, 
sensorineural hearing loss and kidney failure [9,43,62-64]. 

The technical advancement paved way for the replacement 
of defective mitochondria of the mother with a donor, thereby 
protecting her child from having a potentially life-threatening 
mitochondrial disease.

MRT or Mitochondrial Gene Therapy (MGT) is a medical 
technique where defective mitochondria carried by a woman 
are replaced with the healthy mitochondria of a donor. MRT 
has been associated with a number of terms, some of which 
conveyed positive implications like “Mitochondrial gene 
therapy”, “Mitochondrial donation”, “Life-saving Treatment”, 
“Narratives of Hope” while some others made negative 
impacts like “Three parent baby”, “Three-person baby”, “Three 
persons DNA”, “Slippery Slope”, “Designer babies”. The truth 
is that it is the nuclear DNA around which the whole concept 
of child’s genetic identity and personality revolves since, 
nuclear DNA is the one to make a profound impact on the 
latter, not the mtDNA [9]. Mitochondrial Replace Therapy also 
referred to as “Mitochondrial Donation technique” [65] 
associated with the category of techniques in which the 
embryo possessing the nuclear DNA of the parents is 
subjected to in vitro fertilization (IVF) procedure to have 
mtDNA of the donor female [66]. MRT include different 
techniques like spindles transfer, pronuclear transfer or polar 
body transfer [67-70].

In Pronuclear transfer technique: Two zygotes are raised in 
vitro. One belongs to the biological parents with pronuclei 
and defective mitochondria and the second one having 

https://www.sciencedirect.com/topics/neuroscience/mitochondrial-respiration
https://www.sciencedirect.com/topics/neuroscience/nucleic-acids
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pronuclei and healthy mitochondria [71]. The pronuclei of 
biological parents are taken out and transplanted into the 
donor’s zygote (with rejected pronuclei) with healthy 
mitochondria by using electric pulses or inactivated 
hemagglutinating virus of Japan [72] The reformed zygote is 
transferred to the mother’s womb [73]. The world’s first, 
three-parent baby (boy) was born, showing no signs of 
genetic disorder on 6th April 2015 [74]. 

Maternal spindle transfer (MST) technique
Maternal spindle transfer technique has been adopted 

and successfully executed by Dr. John Zhang and his team 
[75]. The technique executed before fertilization is a form of 
selective reproduction similar to prenatal diagnosis and pre-
implantation genetic diagnosis [76]. The maternal spindle 
complex at the metaphase stage is extracted from the 
defective egg of the mother, which is then transplanted into 
the perivitelline space of the enucleated donor’s egg with 
healthy mitochondria (Figure 1) [77]. The reformed embryo is 
transplanted into the mother’s womb. This approach is 
preferable because maternal spindle contains little cytoplasm 
which eventually reduces the chances of mtDNA carryover 
and mutations [78].

Figure 1. Retrieved from http://www.theguardian.com/
science/2013/jun/28/uk-government-ivf-dna-three-people

Polar body genome transfer (PBT) It is considered as the 
most significant approach because of the presence of the 
scarce mitochondria with little cytoplasm which minimizes the 
possibilities of mtDNA carryover. All the nuclear content 
enclosed within polar bodies increases its potency to confer 
the re-established oocytes and zygotes by the above two 
methods. The idea of the usage of the polar bodies was first 
put forth by Wakayama and Yanagimachi but adopted by 
Wang and his colleagues [79] to perform the technique in 
mice where, the transfer of first and the second polar body 
led to the normal progression of the progenies [80].

Prons and Cons of the therapy
It would be unfair to females with mitochondrial disease 

to limit their conceptive range [81]. Apart from biological 
relations, there is another relation that exists between mother 
and child, an emotional connection. 

There are minimal chances of risks correlated with the 
mixing of prospective mother’s mtDNA and donor mtDNA 
[82]. The proofs about discrepancies are not reported yet. It is 
feasible to match the haplotypes of the two [83]. There are 
little possibilities of mtDNA alterations and is unlikely to be 
troublesome [84].

Egg donation can lead to ovarian hyper stimulation 
syndrome and its genetic kinship cannot be achieved as the 
whole gamete (nuclear and mtDNA is shared by a third person 
[71,85]. Prenatal diagnosis is unsuccessful in heteroplastic 
populations. Pre-implantation Genetic Diagnosis is 
appropriate for women with low levels of deficient mtDNA 
[86]. The drawbacks of these alternatives illustrate the 
importance of MRT for couples with mitochondrial diseases.

Mitochondrial infusion
Like cell infusion technique, more recently 2018, Dr. 

Sitaram Emani and his colleagues have restored dying organs 
to Life by infusing mitochondria into a blood vessel feeding 
the heart, instead of directly into the damaged muscle. 
Somehow the organelles will gravitate almost magically to 
the injured cells that need them and take up residence.
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