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Abstract
Antineoplastic therapies related cardiotoxicity has become a significant concern for 

the long-term survival of cancer patients going through such treatments. Thus knowing 
the existing types of therapies that causes cardiotoxicity adverse effects as well as 
exploring their underlying mechanisms is of great clinical importance. In this article, we 
have made a review on the main types of cardiotoxicity-related antineoplastic therapies, 
which could be divided into traditional chemotherapy, targeted therapy, radiotherapy 
and immune therapy; and later we discussed on the possible mechanism of each of 
them. Besides, the monitoring and inspection methods which consists mainly of the 
echocardiography, MRI as well as some biomarkers, various as the methods, right now 
there however doesn’t exist any standard or criterion for the early and timely detection 
of the cardiotoxicity effects for these patients. Furthermore, next we made a summary 
on the protection or prevention of the heart for patients treated or going to be treated 
with antineoplastic therapies, mainly based on the chemotherapy. Lastly, we made a 
discussion on the problems and challenges we are facing and drew a prospect of the 
future on cardio-oncology.

Keywords: Antineoplastic Therapy; Cardiotoxicity; Cancer patients.

Introduction
With the enhancement of the early-stage diagnosis technology, the rate of tumor 

diagnosis has been increasing year by year. With the maturity and wide application of 
chemotherapy and radiotherapy, the survival rate of cancer patients has been greatly 
improved. However, the side effects brought by these antineoplastic therapies have also 
emerged. Among them, cardiac toxicity directly affects the survival and long-term 
prognosis of patients, which makes it an essential aspect to take into consider when 
treating patients. After the occurrence of myocardial infraction (MI) it will further develop 
into refractory heart failure or fatal arrhythmias, which becomes a major cause of death 
among these patients [1]. Early detection and intervention of this process will be playing 
positive roles in the accurate prognosis as well as the decreased mortality of patients. 
Therefore, the cardiotoxicity caused by antineoplastic therapies and its possible 
mechanism, evaluation methods and treatment methods are worth exploring. In this 
review, we aim to: 1) make a summary of the antineoplastic therapies related 
cardiotoxicity and the mechanism; 2) summarize the detection as well as diagnosis 
methods of it; 3) summarize the novel prevention treatment of cardiotoxicity; 4) discuss 
and make a prospect on the future research directions.
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Cardiotoxicity related Antineoplastic 
therapies and the mechanism
Traditional chemotherapy

Anthracyclines: Anthracyclines are highly effective antibiotics 
used against hematopoietic tumors and solid tumors, which 
have multiple cellular and subcellular targets, and thus induce 
cardiotoxicity. The main cardiotoxicity mechanism of 
anthracyclines is characterized by two main aspects, the first 
is that the reactive oxygen species(ROS) produced by 
anthracyclines through enzymatically conversion as well as 
reaction with the iron ions would produce highly reactive 
hydroxyl radicals, which in turn cause intracellular damage of 
the DNA, protein and lipids [2,3]. What’s more, ROS stabilize 
p53, which consecutively initiates senescence and apoptotic 
cell death [4]. In mitochondria, anthracyclines through 
increased ROS formation promote DNA damage and opening 
of the mitochondrial permeability transition pore, which, in 
turn, results in collapse of the mitochondrial membrane 
potential, disruption of the outer mitochondrial membrane, 
release of cytochrome C into the cytosol and the initiation of 
cell death [5]. Besides, recent studies have shown that 
anthracyclines can also directly damage the myocardium by 
inhibiting topoisomerase. The main target of anthracyclines is 
topoisomerase IIα, which is highly expressed in tumors due to 
the active metabolism of tumor cells. Adult cardiomyocytes 
express only the topoisomerase IIβ isoenzyme. These 
structurally as well as catalytic-mechanically similar enzymes 
got damaged by anthracyclines at the same time [6]. 
Moreover, interference of anthracyclines with calcium 
channels increases intracellular calcium levels and induces 
calcium overload, which activates various proteases for further 
damage [7,8]. As for the vasculature, endothelial NO synthase 
(eNOS) activity is reduced, whereas cytosolic calcium is 
increased in smooth muscle cells, making the endothelial 
dysfunction patients more vulnerable to develop into heart 
failure [9,10]. Cardiomyopathy caused by anthracyclines is 
mostly irreversible and dose-dependent because its 
stimulation promotes the progression of cardiomyocytes 
from vacuolar swelling to fibrosis and eventual cell death, 
and, peak drug levels and associated toxicity are reduced 
possibly by prolonged infusion protocols [11].

Cyclophosphamide: Cyclophosphamide is an alkylation 
agent functioning on DNA. Cardiac toxicity of 
cyclophosphamide is relatively rare, which mainly occurs 
when overdosed (more than 140 mg/kg) before bone marrow 
transplantation [12]. The results of the French Pulmonary 
Hypertension Network showed that some chemotherapy 
treatment could lead to pulmonary artery occlusive diseases 
[13]. Among them, cyclophosphamide (43%), mitomycin C 
(24.3%) and cisplatin (21.6%) were most correlated with 
pulmonary artery thrombosis [13]. The formation of pulmonary 
artery thrombosis occurred one year after the beginning of 
chemotherapy. Pulmonary hypertension induced by 
cyclophosphamide is related to endothelial injury induced by 
oxidative stress [14].

Targeted therapy

Trastuzumab: Trastuzumab is a monoclonal antibody that 
inhibits the tyrosine protein kinase erbB-2 and erbB-3 of the 
receptor [15]. It specifically influences the extracellular site of 
the human epidermal growth factor receptor-2 (HER2). Both 
erbB-2 and erbB-3 are expressed in tumor cells, erbB-2, 
however, is also expressed in cardiomyocytes. Animal 
experiments have confirmed that the deletion of erbB-2 in 
cardiomyocytes will lead to dilated cardiomyopathy, 
confirming its important role in the proliferating as well as 
functioning in myocytes [16].

Studies have shown that patients treated with trastuzumab 
alone have a lower incidence of heart disease than those 
treated with anthracyclines [17]. When trastuzumab is 
combined with other antimetabolic drugs and alkylating 
agents for gastric cancer treatment, the incidence of cardiac 
insufficiency and heart failure were 5% and <1% respectively 
[18]. Pre-treatment of anthracyclines or combination 
treatment will add risk to the cardiotoxity of trastuzumab. 
Bowles et al. [19] showed that the incidence of cardiac 
insufficiency and/or heart failure in combination with 
anthracyclines and trastuzumab for one and five years was 
6.2% and 20.1% respectively. Slamon et al. confirmed that 
among patients receiving anthracyclines, cyclophosphamide 
and trastuzumab, the incidence of NYHAIII and IV grade 
cardiac insufficiency was 27%; among those receiving 
anthracyclines or cyclophosphamide, it was 8%; and among 
those receiving paclitaxel and trastuzumab, it was 13%; while 
it was only 1% among patients who received paclitaxel alone 
[17].

Unlike anthracyclines, the typical cardiotoxicity reaction 
of trastuzumab usually occurs during the administration. 
Generally speaking, the cardiotoxicity of trastuzumab is non-
dose-dependent: after discontinuation of trastuzumab and/
or anti-heart-failure treatment, the associated left ventricular 
dysfunction and heart failure are usually reversible. This is 
because the mechanism of HER2 antibody-induced 
cardiotoxicity involves structural and functional changes in 
contractile proteins and mitochondria, but seldom leads to 
cell death [20].

Dashatinib: Dashatinib is an oral tyrosine kinase inhibitor for 
the first-line treatment of patients with chronic myeloid 
leukemia and acute lymphocytic leukemia as well as solid 
tumors such as prostate, ovarian and breast tumors. 
Dashatinib can cause endothelial cell damage, oxidative 
stress, and changes in the proportions of proliferation and 
inhibition of endothelial cells and arterial smooth muscle 
cells. These changes will lead to the increased susceptibility 
and pulmonary artery pressure. The French Pulmonary 
Hypertension Network showed that Dashatinib is also 
associated with pulmonary hypertension [13]. It has been 
shown that the clinical manifestations and organ functions of 
most patients have been improved after the discontinuation 
of Dashatinib. However, some patients died from 
hemodynamic complications.
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Vascular endothelial growth factor (VEGF) signaling 
pathway inhibitors: VEGF inhibitors can cause reversible or 
irreversible cardiac remodeling, especially when combined with 
other chemotherapeutic drugs. This process may be associated 
with the inhibition of the positive effects of VEGF in cardiac 
vascular remodeling [21]. A clinical trial involving a large samples 
of breast cancer patients treated with anti-VEGF antibody 
bevacizumab after chemotherapy showed that, 2% of patients 
developed left ventricular dysfunction, and 1% of them 
developed heart failure (heart function III or IV) [22]. VEGF 
receptor tyrosine kinase inhibitors, such as sunitinib, acinetinib 
and pazopanib, cause heart failure in 3%-15% of patients and 
symptomatic heart failure in 1%-10% of patients [23-25]. Since 
the VEGF pathway and the related NO downstream signaling in 
the cardiovascular system got inhibited, eNOS- phosphorylation 
and reduced activity go along with increased vascular ROS 
levels which contribute to endothelial dysfunction, microvascular 
injury, vascular stiffness, and finally hypertension [26]. Likewise, 
VEGF inhibitors may promote thrombosis, eventually resulting 
in venous and arterial thromboembolic events [27]. However, 
whether to apply anticoagulation therapy is still under 
discussion, since VEGF targeted therapies also carry a relevant 
risk for bleeding [28,29], thus it requires individual decision 
making in case bleeding or thrombosis occurs. Timely control of 
blood pressure may reduce the risk of heart failure [30]. If 
cardiac insufficiency occurs, cardiac insufficiency may be 
reversed by rational and intensive anti-heart failure drugs.

Radiotherapy
It is estimated that more than 50% of modern cancer 

therapies include radiation therapy. Radiotherapy-induced 
heart disease (RIHD) occurs mainly in patients with Hodgkin’s 
lymphoma, breast cancer (especially left breast), lung cancer, 
and other mediastinal malignancies (e.g. esophageal cancer) 
that require chemotherapy [31]. Radioactive heart injury mainly 
consists of: (1) Pericardial lesions: acute pericarditis, pericardial 
effusion and pericardial constriction [32]. (2) Heart muscle 
disease: high-dose radiotherapy heart inflammation, heart 
disease after chemotherapy [33,34]. (3) Coronary artery disease 
[35]. (4) Valvular disease and conduction abnormalities [36].

Radiotherapy first causes damage to the capillary 
endothelium of the heart, which in turn causes inflammation 
and activation of macrophages and monocytes, leading to 
tumor necrosis factor, monocyte chemotactic factor, 
interleukin 1,6,8, transforming growth factor β, insulin-like 
growth factor and platelet differentiation growth factor [37]. 
Damage to the endothelium also causes activation of the 
coagulation mechanism, causing the cellulose to deposit. The 
above changes activate the proliferation of endothelial cells 
and eventually lead to blockage of the microcirculation [38]. 
Activation of matrix metalloproteinases induces degradation 
of the endothelial basement membrane, which in turn causes 
pro-inflammatory cells to aggregate at the damaged tissue. 
In the advanced stage, the gradual occlusion of the 
microcirculation and the formation of thrombus cause 
ischemia and necrosis of the cells, which in turn leads to the 
replacement of the myocardium by fibrous tissue and may 

lead to cardiac insufficiency or even heart failure [39,40]. 
Moreover, chronic oxidative stress damage with persistent 
free radical generation also increases the occurrence of 
advanced atherosclerotic disease [31]. Animal studies on 
myocardium and pericardial tissue have shown an increase in 
the number of inflammatory cells and fibroblasts after 
radiotherapy and a significant increase in extracellular matrix 
(including collagen, glycoprotein and fibronectin) [39].

Another important factor that should not be overlooked 
is the lung damage caused by radiotherapy. Radiotherapy not 
only can cause fibrosis of the lungs and lead to pulmonary 
interstitial fibrosis; but it can also cause endothelial damage 
and inflammation in the microcirculation of the lungs. Both of 
these cause an increase in lung resistance and pulmonary 
wedge pressure and eventually cause or worsen the 
remodeling of the right ventricle [31].

Cardiotoxicity caused by chemotherapy can occur after a 
few weeks; however, RIHD usually occurs much later – more 
often after 5-10 years of the therapy [31,41]. Acute radiation 
reactions are usually subtle, so the monitoring is more difficult 
and clinically relevant [36]. When a patient develops 
cardiovascular symptoms after radiotherapy, his or her 
adverse cardiac reactions should be assessed immediately.

Immune therapy
Immunotherapy is another efficient way to improve the 

prognosis of patients with malignant tumors which has 
changed the treatment landscape of advanced cancers [42]. 
Immunoassay point inhibitors (ICI) are a class of 
immunoregulatory factors that affect the activity of T cells by 
binding with negative immunoregulatory factors on the 
surface of T cells or tumor cells. At present, cytotoxic T 
lymphocyte associated antigen 4 (CTLA-4) and programmed 
cell death protein 1 (PD-1) and their ligand PD-L1 have been 
well studied. Unfortunately, unlike traditional 
chemotherapeutic drugs or molecular targeted drugs, ICIs 
can activate non-specific immunity and induce a wide 
spectrum of adverse events, known as the immune-related 
adverse events (irAEs) [43], among which the currently 
understood spectrum of cardiac pathology includes 
myocarditis, dilated cardiomyopathy, pericardial effusion, and 
arrhythmias, with autoimmune myocarditis being the best 
characterized to date [44-50]. Thyroiditis can lead to thyroid 
crisis, atrial fibrillation, ventricular arrhythmia and heart failure 
[51,52]. Although the exact pathophysiological mechanism is 
not yet fully understood, biopsies from affected organ 
systems have demonstrated lymphocytic infiltration, reflecting 
an autoimmune process [53].

The immune therapy mainly functions by blocking CTLA-
4 (Ipilimumab), blocking PD-1 (Nivolumab and Pembrolizumab) 
as well as the combination of the above two. Cardiovascular 
irAEs attributed to these drugs varies from pericardial effusion 
and pericarditis, to myocarditis and arrhythmias etc. [48,54,55] 
(Table 1), nevertheless, all three therapies are responsible for 
the exacerbation of heart failure, with the signs of dyspnea, 
edema, increased B type natriuretic peptide level, or decreased 
ejection fraction [44-76] which is of great clinical significance. 
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Overall, irAEs attributed to CTLA-4 blockade are considered 
to be more severe than those associated with inhibition of 
PD-1 [65]. What’s more, studies have shown that the cardiac 
toxicity effect of the above therapies is usually dose-
dependent [66]. However, up to now, there are no relevant 
guidelines or consensus that clearly put forward for the use of 
immunoassay point inhibitors in the treatment of patients on 
how to carry out risk population screening, disease monitoring 
and effective treatment after the onset of the disease. 

Table 1. Comparison of three major immune therapies on their 
cardiovascular irAEs, histological changes and dose dependence [44-76].

Ipilimumab 
(blockade of 
CTLA-4) 

Nivolumab and 
Pembrolizumab 
(blockade of PD-1)

Combination Immune 
Checkpoint Blockade 
(combination blockade 
of CTLA-4 and PD-1)

Cardiovascular 
irAEs

pericardial effusion, 
pericarditis, 
myocarditis with 
arrhythmias, 
dilated 
cardiomyopathies 
mirroring [48,54,55]

myocarditis, 
bradyarrhythmias, 
heart block, 
pericardial effusion 
and tamponade 
[44,56,61,62]

cardiac toxicity risk 
increased; elevated 
cardiac enzymes or 
new-onset heart block

Histological 
changes

inflammation and 
postinflammatory 
changes, such as 
myocardial fibrosis; 
nonspecific in 
origin

lymphocytic 
infiltration of cardiac 
tissue, T-cells 
responding 
disproportionately 
to tissues expressing 
PD-L1 or PD-L2 
[44,56,61,62]

lymphocytic infiltration 
of cardiac tissue [70]

Dose 
dependent

possible 
[54,55,63,71-75]

possible [76] possible

Monitoring and Inspection
Firstly, high-risk patients need to be identified and 

screened, including a careful assessment of baseline 
cardiovascular risk factors. Risk factors assessment includes 
asking for medical history and auxiliary examinations, such as 
imaging methods to assess baseline cardiac function before 
tumor treatment. In addition, cardiac biomarkers (natriuretic 
peptide or troponin) are critical for detecting subclinical 
cardiac abnormalities, which are also very valuable for the 
selection, assessment of indications for cardioprotective 
therapy, and deciding whether to increase the frequency of 
monitoring for asymptomatic left ventricular dysfunction or 
not.

Detection of the cardiotoxicity has gone through great 
revolution with the advancement of examination techniques. 
Traditional method like ECG is still being widely used clinically 
but owing to the lack of sensitivity and specificity, it’s more 
often used as part of the routine check and might be able to 
seize the transient changes indicating cardiotoxicity. 
Echocardiography is known as the standard method for the 
evaluation of cardiac function. Cardiotoxicity is defined as a 
decrease in 3D echocardiography ejection fraction by 10% to a 
level below 50% [77], and echocardiography should be redone 
to confirm whether LVEF will keep dropping 2-3 weeks after 
the drop is first detected. Speckle tracking global longitudinal 
strain (GLS) imaging has shown higher specificity and sensitivity, 
lower intra- and inter-observer variability, and provides 
comparable results to magnetic resonance imaging (MRI) [78]. 
Echocardiographic three dimensional speckle tracking imaging 

(3D-STI) evaluation of the LV provides an understanding of the 
segmental impairment of LV wall and the possible process of 
LV impairment in lymphoma patients after anthracycline 
chemotherapy [79]. MRI remains the gold standard for the 
quantification of cardiac dimensions and ventricular function, 
but is often only used as a secondary option – mainly in patients 
with poor echocardiography windows or inconclusive results 
[80]. Special applications of cardiac magnetic resonance (CMR) 
to assess for cancer therapy–induced cardiac toxicity include 
the detection of subclinical LV dysfunction through novel 
methods of measuring myocardial strain, detection of 
microcirculatory dysfunction, identification of LV and LA 
fibrosis, and more sensitive detection of inflammation caused 
by immune checkpoint inhibitors, which plays a significant role 
in the non-invasive workup of cardiac toxicity from cancer 
therapies [81]. As for the cardiac biomarkers for detection of 
the cardiotoxicity, there’s no standard criterion currently, 
however, troponin and brain natriuretic peptide (BNP) levels 
are routinely measured in tumor patients receiving 
chemotherapy. Troponin elevation has been used to reflect the 
susceptibility of cardiomyopathy-inducing drugs, particularly 
anthracycline therapies [82-84]. What’s more, the combined 
use of troponin measurement and echocardiography has been 
superior in the diagnosis of cardiotoxicity over echocardiography 
alone [78]. For patients undergo trastuzumab treatments, 
especially those who had been previously treated with 
anthracyclines, the elevation of troponin I can be used to 
recognize patients of cardiac dysfunction and those that are 
hard to restore their cardiac function. The sensitivity of high-
sensitivity troponin I combined with GLS examination for 
predicting the occurrence of heart failure in breast cancer 
patients after chemotherapy can reach 93% [85]. The exact 
definition of biomarker distribution and cut-off level still wait 
for future trials to assess. Currently, troponin should be assessed 
in patients before and during anthracycline therapy, during 
checkpoint inhibitor medication, and whenever ischemic heart 
disease is suspected [80].

All patients receiving potential cardiotoxicity 
chemotherapy should undergo a cardiac assessment during 
the follow-up period after the end of the treatment. The 
proper time to for these inspections should be individualized 
according to the underlying cardiovascular risks and specific 
cancer treatment regimens.

Protection and Prevention
Over the past few decades, the recognizing of neoplastic 

therapy related cardiac toxicity has shifted to treating as well 
as preventing. Reviewing on the current treatments as well as 
protective therapy to impede and alleviate the cardiotoxicity 
is of great clinical significant for the better prognosis of 
patients.

The most effective approach to minimize cardiotoxicity is 
early identification and early onset of a prophylactic treatment 
[86]. However, with the lack of efficient cardiac assessment 
standards for predicting the cardiotoxicity in advance, some 
prevention measures have to be taken for the better prognosis 
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of patients. Firstly, limitation of the maximum dose of 
antracyclines is of great clinical significance [87], but due to the 
genetic variation as well as the compromise of effect-reducing 
when the dose decreased, individualized dose limitation needs 
to be explored. Studies show that minimizing anthracycline 
exposure, or when possible, avoiding anthracycline-based 
regimens in breast cancer patients, and in young and old 
populations who are more vulnerable to anthracycline 
cardiotoxic effect–should be taken into consideration [88-90]. 
Secondly, some less cardiotoxic anthracycline analogues could 
be used to alleviate the adverse effects. Epirubicin, idarubicin 
and mitoxantrone are analogues of anthracyclines that have 
been shown to be less cardiotoxic than conventional 
anthracyclines in preclinical and clinical studies [86]. Epirubicin 
cardiotoxicity occurs after higher doses than doxorubicin, but 
higher doses must be administered to achieve the same clinical 
response (90 mg/mq epirubicin=60 mg/mg doxorubicin). 
Idarubicin and mitoxantrone also showed a less cardiotoxic 
profile than doxorubicin in pre-clinical studies and animal 
models, clinical trials is needed for further confirm of this effect 
[87,91]. Thirdly, liposome encapsulation anthracyclines have 
been proved efficient in reducing the cardiotoxicity. Liposomal 
formulations are small enough (80–90 nm) to penetrate 
through the more fragile fenestrated microvasculature that 
characterizes solid tumors, resulting in preferential accumulation 
in tumors and minimal release in plasma and healthy tissues, 
voiding the high plasma levels of free doxorubicin, which is 
strongly associated with cardiac toxicity, as well as not 
compromising the tumoricidal efficacy [92-94].

As for the medical therapies: Firstly, several kinds of 
β-blockers are considered cardioprotective according to 
clinical as well as preclinical trials. Among them, Carvedilol, a 
non-cardioselective beta-blocker with antioxidant properties, 
has been shown to be a cardioprotective effective against 
anthracyclines toxicity both in vivo studies and in clinical trials 
[95-97], with the function of preventing the LVEF reduction. 
The exact mechanism by which carvedilol exerts its 
cardioprotective effect is unclear but it appears to be related 
to its antioxidant activity, rather than to its beta-blocking 
action when compared with other β-blockers [91,98]. The 
cardioprotective action of nebivolol, a selective β1 antagonist 
with nitric oxide-dependent vasodilatory properties, has been 
demonstrated a small clinical trial of breast cancer patients, 
the result showed no significant improvements of the LVEF or 
the BNP level, but patients of the treated group suffered 
comparably less LVEF reduction [99]. Secondly, since the renin 
angiotensin system (RAS) plays a crucial role in the 
development and progression of cardiotoxicity induced by 
anthracyclines, angiotensin-converting enzyme inhibitors and 
angiotensin receptor blockers are considered effective in the 
treatment of cardiotoxicity [100]. Valsartan, an angiotensin II 
receptor blocker, when administered together with 
anthracyclines, was able to prevent the increase of cardiac 
biomarkers such as ANP and BNP, the increase of tele-
diastolic left ventricular diameter, and QTc interval [101]. The 
angiotensin II receptor blocker telmisartan, initiated 1 week 
before epirubicin in 25 patients with various solid tumors, was 

able to prevent significant reduction in myocardial 
deformation parameters and an increase in reactive oxygen 
species or in interleukin-6, not only because of its RAS 
blocking action, but also because of its anti-inflammatory and 
anti-oxidant properties [102]. Thirdly, aldosterone antagonists 
like spironolactone has been evaluated versus placebo in a 
recent randomized trial, pateints didn’t show significant 
reductions in FEVS, and had a preserved diastolic function 
with no increase in troponin I and NT-proBNP after starting 
the drug one week before anthracycline-including 
chemotherapy [103]. Fourthly, known for their antioxidant 
effect, statins are also considered cardioprotective against 
anthracycline [104]. What’s more, the protective effect of 
statins also seemed to present in patients already receiving 
statins for prevention of cardiovascular disease when 
chemotherapy was started [105].

Discussion and Prospect
With more patients’ life spans got prolonged thanks to 

the modern antineoplastic therapies, problems arise as the 
adverse effects of them have become more and more the 
concern clinically. At present, antineoplastic therapies and 
their cardiotoxicity effects have been better known with 
clinical practices, and the problems behind could be divided 
into: 1) Lack of the knowledge of the exact cardiotoxicity 
mechanism of each therapy; 2) Lack of a complete system or 
standard for the measurement of the cardiac function of 
patients going through antineoplastic therapies; 3) Lack of 
criteria for the detection of the cardiotoxicity effects before 
symptoms appear of the clinical biomarkers and other early 
index; 4) Lack of a standard prevention and treatment strategy 
specialized for these patients. For future studies and trials, all 
of the above problems await for solution and with a better 
knowledge of the potential mechanisms of the cardiotoxicity 
effects, more and more efficient treatment will be figured out.

As an emerging subspecialty, oncocardiology shows a 
complex and close relationship between neoplasia and 
cardiovascular disease. However, due to the specificity of 
tumors and cardiovascular diseases, there are many 
differences in clinical management strategies between 
patients with tumors and cardiovascular diseases. To this end, 
the collaboration between oncologists and cardiovascular 
doctors is becoming closer, and a safer and more effective 
chemotherapy regimen is being explored to establish a 
practical cardiotoxicity prevention and treatment system for a 
brighter prognosis of the patients.
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