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Abstract
Glutamate metabolism plays critical roles in the growth and invasion of glioma, 

which supports the growth of tumor cells through participating in energy supply and 
regulates redox balance in cells. High concentration of glutamate can destroy the 
normal brain tissues and get invasive space. Glutamate at excess levels in the milli-molar 
range acts inhibition of immune response and secretes cytokines of immune negative 
regulation, which promotes the immune escape of tumor cells. The production of 
glutamate mainly depends on the rapid consumption of glutamine by glioma cells, and 
the depletion of glutamine is beneficial for the maturation of myeloid derived 
suppressor cells, further enhancing the immune suppression. In this review, we focus on 
immune-modulating capacities of the glutamate metabolism of glioma, and the 
mechanism may be helpful towards optimization of immune systems with implications 
for glioma treatment.

Keywords: Glioma, Glutamate metabolism; Immune escape; T cells; Myeloid derived 
suppressor cells (MDSCs).

Introduction
Glutamate is one of the major excitatory neurotransmitters in the central nervous 

system (CNS) [1], [2]. Glutamate plays an important physiological role in the process of 
nervous system nutrition, development and neuronal information transmission [3-6]. 
Under normal healthy condition, the glutamate concentration in the cerebrospinal fluid 
and in the brain extracellular fluid is 1 uM [1], [6]. While the levels of glutamine in 
cerebrospinal fluid in glioma patients can reach up to 400 uM [7]. Importantly, this 
excess of glutamate is very harmful in the CNS because it leads to ‘excitotoxicity’, and 
elevated glutamate concentrations can cause excitatory neuronal death. Glutamate over-
activates the excitatory amino acid transporters (EAATs) and glutamate receptors in the 
postsynaptic membrane, causing massive influx of calcium ions, triggering a series of 
enzymatic reactions that eventually lead to organelle failure, cell lysis, and death [8-10]. 
The expression of EAATs [11] and glutamate receptors [12] are absent or down-
regulated in glioma cells. Thus, excessive glutamate in the brain extracellular fluid cannot 
cause excitatory toxicity damage to glioma cells.

Under physiological and pathological conditions, the sources of extracellular 
glutamate in the CNS are extremely different. Normally glutamate is produced by 
neuronal cells and released from the synaptic vesicles [13]. Glioma cells produce glutamate 
by depleting glutamine. The release of glutamate from glutamate transporters system Xc- 
is a major source of extracellular glutamate [7], [14]. During tumor development, the 
number of astrocytes which can utilize glutamate is reduced and its ability to take up 
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glutamate of glioma microenvironment is decreased. To this 
end, the extracellular glutamate concentration increases rapidly, 
and the glutamate balance of microenvironment is destructed. 
The increased uptake of glutamine and its flow to glutamate is 
an important feature of highly proliferation tumor cells [10], 
[14-16]. Glutamine appears to regulate T cells proliferation, the 
rate of IL-2 production and IL-2 receptor expression [17]. Thus, 
both depletion of glutamine and accumulation of glutamate 
generate a limited function of T cells [17-19]. Glutaminolysis 
also contributes to MDSCs maturation through the energy 
supply and metabolic intermediation [20]. Maintaining optimal 
glutamine or glutamate levels are critical in preventing the 
MDSC-mediated immuno-suppression. As glutamate receptors 
and transporters are described for a variety of immune cells a 
new role of glutamate as an immune-regulator was suggested 
[21-23].

Glutamate metabolism in glioma cells
Glioma cells present an increased glutamine turnover, 

partly based on the higher activity and expression of 
glutaminase, which converts glutamine into glutamate [24]. 
Glutamate metabolism in glioma cells have three major 
pathways: 1) Glutamate can be converted to a-ketoglutarate, 
which enters the TCA cycle to generate ATP through 
production of NADH and FADH2 [25]. 2) Glutathione is a tri-
peptide (Glu-Cys-Gly) which serves to neutralize peroxide 
free radicals. Glutamate metabolism is critical for cellular 
ROS homeostasis through synthesis of glutathione [26]. 3) 
Glutamate transporters system Xc- (SXC) transport 
glutamate to the extracellular and cystine uptake into cells. 
Cystine is further reduced to cysteine, which is combined 
with glycine and glutamate to synthesize glutathione [27], 
[28]. Cancer cells with strong PI3K-AKT-mTOR pathway 
activation increase their flux of glutamate to a-ketoglutarate 
for metabolism and biosynthesis [29-32]. Due to the 
overexpression of phosphory-AKT, an increasing number of 
chemotherapy-resistant cases have been reported clinically 
[33]. Inhibitors of the PI3K-AKT signaling pathway, have 
identified to induce apoptosis of glioma cells and enhance 
the cytotoxicity of chemotherapy [33-36].

Glutamate receptors include two classes: ionotropic 
glutamate receptors (iGluRs) and metabotropic glutamate 
receptors (mGluRs). The iGluRs are membrane-spanning 
multimeric assemblies of four subunits and subdivided into 
three groups according to their pharmacology, structural 
similarities, and the type of synthetic agonist that activates 
them: The N-methyl-D-aspartate (NMDA), Alpha-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid (AMPA), and 
2-carboxy-3-carboxymethy1-4-isopropenylpyrrolidine 
(Kainate; KA) iGluRs [37-39]. The mGluRs have eight subtypes. 
These eight mGluRs are products of different genes and also 
subdivided into three groups, termed group Ⅰ(mGluR 1 and 
5),Ⅱ(mGluR 2 and 3) and Ⅲ (mGluR 4, 6, 7 and 8) mGluRs, 
based on sequence similarity, pharmacology and intracellular 
signaling mechanisms [23], [40]. Glutamate can activate all its 
iGluRs and mGluRs. Glioma cells lack glutamate receptors to 
avoid the excitatory toxicity damage of glutamate [12]. Fasudil 

upregulates the expression of NMDA iGluRs in glioma cells 
and thus plays an anti-tumor role. The anti-tumor effect of 
fasudil was dose-dependent with glutamate [41].

Glutamate metabolism induced effects on T cells
Higher functional acidity CD8 T cell responses are 

believed to play a direct role in clearing acute viral infections 
and eliminating cancer cells. The effective T cell responses 
are evoked by high functional avidity T cells in the case of 
tumors. Thus, an attenuated functional avidity exhibited by T 
cells in cancer can partially explain why cancer cells persist 
and proliferate [42-44]. Glutamate concentrations in glioma 
microenvironments are 400 fold higher in normal brain 
tissue [1], [6], [7]. Which induces excitatory neuronal cells 
and other normal cells death. High concentrations of 
glutamate is secreted by tumor cells and has been shown to 
suppress T cell activity in vitro [18]. In this review we 
summarize, analyze and discuss the relationship between 
glutamate metabolism and T cell activation/proliferation in 
glioma microenvironment.

AMPA GluR3 has been shown to be expressed on the 
surface of naïve normal T cells [45], [46]. And sequencing 
showed that the T cell expressed GluR3 is identical to the 
brain’s GluR3 [46]. Interestingly, while at low physiological 
concentrations glutamate directly activates naïve T cells via 
AMPA iGluRs [46], when glutamate’s concentration raise 
markedly, such as in glioma microenvironment, glutamate 
usually does the opposite and inhibits T cell function [23]. 
This GluR3 degradation following T cell activation is carried 
out by granzyme B, a proteolytic enzyme that is produced 
and secreted by TCR-activated T cells [47]. Thus, at mid 
micromolar concentrations (1-10 uM), glutamate increase 
iCa2+ in activated T cells, but not in naïve T cells [48], which is 
essential for the subsequent proliferation of the T cells [49]. 
In contrast, glutamate at a higher concentration range of 
400 uM to 1000 uM fail to increase iCa2+ [48]. Therefore, 
high glutamate levels with glutamate secreted by glioma 
cells inhibit T cell proliferation.

Glutamate suppresses the proliferation of activated T 
cells but not affect the proliferation of normal naïve T cells 
[48], [50], [51] showing the marked different GluRs between 
naïve and activated T cells. The NMDA iGluR antagonists 
D-AP5 and (+)-MK801 inhibit PHA-induced but not IL-2-
induced T cell proliferation [52]. The selective mGluR5 
agonist CHPG also inhibites the proliferation of CD3-
activated T cells [51]. Interestingly, glutamate at a broad 
concentration range of 10 nM to 100 uM protect activated T 
cells from apoptotic Activation-Induced Cell Death (AICD) 
through inhibiting FasL expression of activated T cells [53]. 
Together, the evidences in the above parts suggest that 
glutamate at 1 uM inhibits T cell apoptosis and prolongs 
survival, while glutamate at higher concentration of 400 uM 
to 10 mM can inhibit T cell proliferation.

The rapid consumption of glutamine by glioma cells 
releases glutamate as a limited function of immune cells [19]. 
The effects of metabolic inhibitors in vivo may also broadly 
influence immunity. In fact, glutamine metabolism in increased 
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in T cell activation and regulates skewing of CD4 T cells towards 
more inflammatory subtypes [54-56]. While in vitro 
experiments suggest that inhibiting the release of glutamate 
and depletion of glutamine can activate lymphocytes [57], the 
anti-tumor immunity effect of GLS inhibition requires further 
studies in vivo. These data suggest that inhibiting glutamate 
release may helpful to immunotherapy of tumor, either through 
the blocking of immune checkpoints or the use of engineered 
chimeric antigen receptor (CAR) T cells.

The effects of glutamate on T cell cytokine secretion
Many of the immune escape mechanisms are based on a 

response that is not inhibiting but maybe even promoting the 
tumor. One of the best explored examples is the induction of 
the two different effector CD4 T helper cell responses (Th1 
and Th2 responses) [58]. The Th1 response is fostering 
cytotoxic responses by secreting IFNγ activating the cytolytic 
activities of macrophages and cytotoxic T lymphocytes (CTL); 
Th2 cells are fostering humoral responses by production of 
IL4 activating B cells. Th2 response is regarded rather as a 
tumor-promoting as compared to a tumor-inhibiting Th1 
response which could potentially lead to tumor clearance by 
triggering a CTL response against tumor antigens [58], [59].

It is reported that glutamate can affect cytokine secretion 
by T cells. Glutamate at very high concentration of 1 mM 
increases IFNγ and IL10 secretion by CD3 activated T cells. But 
at even higher concentration of 5 mM, glutamate has an 
opposite effect and decreases IFNγ, IL10 and IL5 secretion by 
these T cells. NMDA at 0.5 mM also suppresses IFNγ secretion 
by IL2 activated T cells [60]. These evidence show that 
stimulation of the NMDA iGluRs in these activated T cells by 
excess glutamate can lead to IFNγ inhibition. T cells in vivo 
under physiological conditions, glutamate at 1 uM may operate 
via mGluRs to modulate IL6 production and enhance the 
secretion of TNFα, IFNγ, IL2 and IL10 [61]. These studies show 
that the effects of glutamate on T cell cytokine secretion 
depend on many factors: glutamate’s concentration, the 
specific GluRs involved, the activation state of the T cells being 
exposed to glutamate, the specific T cell subtypes, the specific 
cytokine involved, and whether or not the T cells are exposed 
to other stimuli besides glutamate at the same time [23]. 
However, it is agreed that controlling glutamate in a 
physiological concentration helps to activate T cells.

Glutamate metabolism induced effects on other immune 
cells

MDSCs are generated in the bone marrow and migrate 
to the peripheral lymphoid organs and tumor tissues [62]. 
The major function of the MDSCs during tumor progression 
is to inhibit T cells activity and promote tumor growth [63-
66]. Increased glutamine consumption of glioma cells 
contributes to MDSCs maturation through the supply of 
energy and metabolic intermediates [67]. Glioma cells 
metabolize glutamine at high rate to produce glutamate. 
Thus, high concentration of glutamate direct affects MDSCs 
function and infiltration in glima microenvironment needs 
further study.

The expression of KA iGluRs in B cells has been 
demonstrated. And the authors suggest that activation of 
such KA iGluRs by glutamate and KA increased IgE and IgG 
synthesis and cell proliferation [68]. Human monocytes-
derived macrophages express both mGluR5 and mGluR1 [69], 
and rat alveolar macrophages express the NMDA subunits 
NR1 and NR2B [70]. Both medullary dendritic cells (DCs) and 
cortical DCs express high levels of mGluR5 and moderate 
levels of mGluR2, 3 and 4 [71]. While a great deal has been 
learned already about the effects of glutamate on T cells, the 
outcome of glutamate binding to other types of immune 
cells is to a large extent unknown [22]. Here, we hypothesize 
that different glutamate concentrations affect function of 
immune cells as well as T cells through binding GluRs.

Conclusion
As a neurotransmitter and an immune-regulator, 

glutamate plays multiple roles in the microenvironment of 
glioma. In addition to inducing brain tissue damage and 
infiltration of glioma cells, high concentration of glutamate 
promotes immune escape of glioma through inhibiting T cell 
proliferation and activity. Therefore, targeted inhibition of 
glutamate metabolism in glioma may prove to be beneficial.
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