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Abstract
The temperature across the globe is constantly changing for the worse of the biotic 

beings viz., the flora and fauna. Rapid temperature changes are the result of continuous 
interference of human beings as a bane post the rapid industrialization and urbanization. 
The ever increasing and decreasing ranges of temperature in the environment are 
leading to the malfunctioning of various physiological and biochemical processes in 
plants thereby resulting in severe temperature stresses in terms of high temperature/
heat stress as well as low temperature stress (chilling and freezing stress). Brassinosteroids 
(BRs) are a novel group of plant growth regulators (PGR’s) with significant growth 
promoting activity. BRs were initially extensively studied for their profound growth 
promoting physiological responses viz., growth and yield, seed germination, 
photosynthesis, senescence, photomorphogenesis, flowering etc. BRs have been further 
explored for stress-protective properties in plants against a number of abiotic stresses 
like heat, chilling, freezing, drought, flooding, oxidative, salt, allelochemicals, radiation, 
light, wind, heavy metals stresses etc,. and can be aptly stated that BRs induce plant 
tolerance to a wide spectrum of stresses. The present review is a study on the role of BRs 
in mitigating the effect of temperature stress in plants viz., high temperature/heat stress 
as well as low temperature stress (chilling and freezing stress).

Keywords: Brassinosteroids; Chilling stress; Freezing stress; High temperature stress; 
Low Temperature stress.

Introduction
Brassinosteroids (BRs) are a novel type of polyhydroxy steroidal phytohormones 

that are capable of emphatically exhibiting pronounced growth-promoting influence 
[1,2]. The discovery of this new group of PGRs (plant growth regulators) way back in the 
early 70’s [3-5] followed by the research work in the late 70’s by Grove et al. [6] led to 
the recognition of BRs as a potential 6th group of PGRs. BRs are usually classified as C27, 
C28 or C29 BRs according to the number of carbons in their structure and brassinolide 
(BL), 28-homobrassinolide (28-HomoBL) and 24-epibrassinolide (24-EpiBL) are the three 
potential BRs of the present world of research and development [7] are represented in 
figure 1.

BRs was first studied as the regular PGRs capable of modulating a wide range of 
physiological functions like source/sink relationships, seed germination, photosynthesis, 
senescence, photomorphogenesis, flowering and responses to different abiotic and 
biotic stresses [8]. The research on BRs exhibited their ability in overcoming various 
abiotic stresses like high temperature [9], low temperature in terms of chilling [10,11] as 
well as freezing [12], salt [13,14], light [15], water in terms of drought [16,17] as well as 
flooding [18], heavy metals [19-21], osmotic [22], herbicide [23], pesticide [24], inorganic 
pollutants [25,26] as well as organic pollutants [27,28] stresses. Further, BRs were also 
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capable of overcoming different biotic stresses caused by 
viruses [29,30], nematodes [31,32], fungi [33], insects [34], 
bacteria [35] etc. The recent studies on BRs also revealed their 
ability in overcoming certain unique stresses like newly 
reclaimed sandy soil stress [36], shade stress [37], preservative 
stress [38], petroleum polluted soil stress [39] etc. The present 
review focuses on the ability of BRs in mitigating temperature 
stress in different plants viz., high temperature/heat stress as 
well as low temperature stress (chilling and freezing stress).
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Figure 1. Potential BRs in Research.

Temperature causes a lot of physiological changes in 
plants especially in the disruption of the enzymes which are 
basically proteins capable of solarization as well as 
crystallization due to high or low temperature. This in turn 
affects the major metabolic processes like photosynthesis 
and respiration. Application of PGRs especially BRs mitigated 
the different stresses in plants caused by different temperature 
regimes. The recent changes in the environment across the 
globe due to various reasons especially global warming is 
posing a severe threat to the plants due to fluctuations of 
temperatures. Hence the present review article is to show the 

role of BRs as effective PGRs in mitigating various temperature 
stresses in different plants and their potentiality in combating 
the negative effect of temperature stresses in plants.

BRs in mitigating different 
Temperature Stresses in Plants

BRs are known to mitigate various stresses including 
temperature stress which includes high temperature/
heat stress and low temperature stress (chilling and 
freezing). Application of 24-EpiBL at 10-11, 10-9 and 10-7 
M to three Brassica species (B. carinata, B. juncea and B. 
napus) under high as well as low temperature (4, 14, 34 
and 44°C) for 5 hours mitigated high and low temperature 
stresses in all the three Brassica species by decreasing 
the lipid peroxidation in terms of MDA (malondialdehyde) 
content and accumulation of the osmolyte, proline [40]. 
Chen et al. [11] reported that cold-induced oxidative 
stress in grapevine seedlings was mitigated by foliar 
treatment of 24-epiBL by regulating the ascorbate-
glutathione cycle. Further, Zhao et al. [41] also reported 
that application of 24-epiBL mitigated a combination of 
drought and heat stress in Triticum aestivum L. seedlings 
by increasing the rate of photosynthesis and Rubisco 
activase gene expression.

BRs in mitigating Heat/High 
Temperature Stress in Plants

Cukor et al. [42] reported that application of BRs positively 
regulated the seed germination of Scots pine cultivated under 
standard and heat stress conditions. BRs were reported to 
play a positive role in mitigating the high temperature or heat 
stress in plants [43,44]. Wilen et al. [45] in the early 90’s 
studied that supplementation of 24-EpiBL markedly enhanced 
the tolerance to high temperature stress in brome grass cell 
suspension cultures by enhanced accumulation of ABA-
inducible heat stable proteins. Hayat et al. [46] observed that 
treatment of 28-homoBL to Vigna radiata c.v. T-44 plants 
mitigated the stress generated by high temperature by 
improved membrane stability index (MSI), leaf water potential 
(ψ), increased activities of antioxidative enzymes as well as 
proline levels. Cao and Zhao [47] studied that foliar application 
of 0.005 mg/L of BR to two varieties of Indica rice (Oryza 
sativa L.) seedlings viz., Xieqingzao B (heat-sensitive) and 082 
(heat-tolerant) mitigated high temperature stress by 
enhanced activities of peroxidase (POD), super oxide 
dismutase (SOD) isozymes expression levels and reduced 
MDA levels and leakage of leaf electrolytes. BRs were found 
to enhance the rate of photosynthesis by increasing the CO2 
fixation and the antioxidative system activities in tomato 
plants by mitigating high temperature stress [48]. Mazorra et 
al. [49] studied that the pre -incubation with 24-epiBL or MH5 
(polyhydroxylated spirostanic analogue of BR) for around 24 
hours mitigated heat stress in tomato leaf discs by enhanced 
the activities of catalase (CAT), peroxidase (POD) and super 
oxide dismutase (SOD). Further, a study on mitochondrial 
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small heat shock proteins (MT-sHSPs) of tomato showed the 
leaves did not preferentially accumulate in 24-epiBL treated 
plants at 25°C but accumulated at 38°C [50]. Further, Mazorra 
et al. [51] also reported that application of EpiBL induced 
tolerance to heat shock (HS) in tomato seedlings [BR-deficient 
mutant (extreme dwarf d(x)), a partially BR-insensitive mutant 
curl3(-abs) allele (curl3 altered brassinolide sensitivity) and a 
line over expressing the dwarf, BR-biosynthesis gene (35SD)] 
by reduced ion leakage, lipid peroxidation and increased 
antioxidative systems.

Homo BL was found to mitigate the negativity of heat 
stress in growth of apical meristems of banana shoots cultured 
in vitro conditions [52]. Janeczko et al. [53] studied that 
application of 24-epiBL mitigated heat stress and improved 
the physiological functions of barley. Dhaubhadel et al. [54] 
observed that application of 24-epiBL resulted in enhanced 
basic thermo tolerance of tomato seedlings which might have 
been due to the protection of the translational machinery as 
well as heat-shock protein synthesis by BR-application [55]. 
BRs mitigated heat-induced inhibition of photosynthetic 
capability by enhanced carboxylation efficiency as well as 
antioxidative enzyme system in Lycopersicon esculentum [48]. 
Foliar treatment of 24-epiBL mitigated the ill effects of high-
temperature-induced inhibition of photosynthesis in two 
cultivars of melon (Cucumis melo L.) seedlings [56]. A 
preliminary laboratory research established that the tomato 
leaf ultra structure was less affected in Bio Bras 6-treated 
leaves subjected to high temperature stress [57]. Further, Sam 
et al. [58] observed that a BR-analogue (Bio Brass-6) mitigated 
the negative effect of high temperature stress (40°C for 1.5 h) 
on leaf ultra structure of tomato plants and improved the 
internal membrane system of chloroplasts and mitochondria. 
Even, Niu et al. [59] also observed that foliar treatment of BRs 
to (Trin.) Tzvelev grown under high temperatures mitigated 
the stress and improved the morphological and physiological 
traits of Leymus chinensis.

Krishna et al. [60] observed that supplementation of 
24-epiBL resulted in enhanced basic thermotolerance of 
tomato seedlings. BRs mitigated the high-temperature injury 
in Ficus concinna seedlings by enhanced antioxidative defense 
mechanism and improved glyoxalase systems [61]. BRs were 
also found to improve the rate of photosynthesis, lipid 
peroxidation, and rice seed set under high temperature stress 
[62,63]. 24-EpiBL supplemented tomato pollen showed higher 
in vitro pollen germination and increased tube growth 
subjected to high temperature stress [64]. Further, 
exogenously treated BRs enhanced the development of heat-
stressed rice pollens [65]. Recently, Liu et al. [66] reported that 
BRs improved the lipid productivity and enhanced the stress 
tolerance of Chlorella cells subjected to high temperature.

BRs in mitigating Low Temperature in 
Plants

Plants are prone to low temperature stress during winter 
or autumn. Low temperature stress includes chilling stress as 
well as freezing stress. The research study conducted by 

Janeczko et al. [67] showed that BR infiltration prior to cold 
treatment reduced the ion leakage in rape plants and stated 
that BRs are potential mitigators of low temperature stress.

BRs in mitigating Chilling/Cold stress 
in Plants

BL mitigated the ill effect of chilling stress and increased 
the growth of cucumber [68] and maize [69] seedlings. The 
supplementation of BL markedly enhanced the seed 
germination and seedling growth of rice subjected to low-
temperature stress [70]. The treatment of BL exhibited 
enhanced lamina joint-cell elongation under low-temperature 
stress in rice [71]. He et al. [72] stated that BL enhanced the 
growth of maize subjected to chilling stress. Xi et al. [73] 
observed that supplementation of 24-epiBL resulted in 
enhanced antioxidative defense mechanisms as well as 
modulated osmoregulatory systems in young grapevines (V. 
vinifera L.) grown under chilling stress. Liu et al. [74] studied 
that treatment of 24-EpiBL to Chorispora bungeana cell 
suspension cultures exposed to 4 and 0° C for 5 days of 
chilling stress showed mitigation of oxidative damage due to 
over production of ROS (reactive oxygen species) by increased 
antioxidative defense mechanism viz., enhancement in the 
activities of antioxidative components like APX (ascorbate 
peroxidase), CAT (catalase), POD, SOD, ASA (ascorbic acid) 
and decreased contents of GSH (reduced glutathione). Kumar 
et al. [75] reported that foliar application of 24-epiBL to 
Brassica juncea L. seedlings grown under 4°C of chilling stress 
exhibited reduced H2O2 concentration by enhanced 
antioxidant defense system (enhanced activities of various 
antioxidative enzymes viz., CAT, APX and SOD). Hu et al. [76] 
studied that foliar supplementation of 24-epiBL mitigated the 
12/8°C chilling-induced inhibition of photosynthetic capacity 
of cucumber (Cucumis sativus L) plants by not only decreasing 
the production of ROS accumulation, but also enhancing the 
activities of SOD, APX; decreasing H2O2 and MDA. Further, Hu 
et al. [77] also studied that cucumber plants pretreated with 
24–epiBL as well as 0.3 and 1.0 mmol·L-1 chlorpyrifos mitigated 
the phytotoxicity as well as chilling stress by enhancing the 
oxidative stress and regulating antioxidative enzymes (APX, 
GR [glutathione reductase], CAT and GPX).

Earlier research indicated by Ohshiro et al. [78] showed 
that 24-epiBL capably regenerated the bulbets of Lilium 
japonicam by breaking the dormancy. BL effectively mitigated 
the ill effects of chilling stress in tomato [54] and increased 
the growth of cucumber seedlings [79]. Fariduddin et al. [80] 
observed that 10−8, or 10−6 M 28-homoBL mitigated chilling 
stress (10/8°C, 5/3°C) by enhanced growth, photosynthesis, 
activities of antioxidant enzymes like CAT, POD, SOD and the 
osmolyte, proline in cucumber (Cucumis sativus L.) subjected 
to stress. Jiang et al. [81] studied that BRs were capable of 
protecting the photosynthetic apparatus from cold-induced 
damage in Cucumis sativus plants by enhancing the activities 
of Calvin cycle enzymes and enhancing the antioxidative 
system which in turn resulted in mitigation of the photo 
oxidative stress during the process of recovery from chilling 
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injury. Wang et al. [82] reported that BRs ( 5, 10 and 15 µM) 
efficiently decreased the chilling injury of pepper fruit during 
18-day storage at 3°C by decreasing the electrolyte leakage, 
MDA content and enhancing antioxidative enzyme activities 
(CAT, POD, APX and GR). Aghdam et al. [83] studied that 
application of 0, 3 and 6 µM BRs to tomato fruits stored at 1°C 
for 21 days decreased the chilling injury, electrolyte leakage, 
MDA content while increased proline levels, total phenols, 
phenylalanine ammonia-lyase (PAL) activity and maintained 
the membrane integrity.

Anwar et al. [84] observed that 24-EpiBL mitigated the 
endogenous hormone levels to enhance low-temperature 
stress tolerance in cucumber seedlings. BR-supplemented 
tomato (Lycopersicon esculentum) plants grew better than 
control plants under low temperature conditions [85]. BL 
supplementation resulted in increased energy status and 
proline metabolism in bamboo shoots during postharvest 
stage under chilling stress [86]. Watanabe et al. [87] studied 
that foliar application of Ts303, a BL analogue before one 
week of flowering enhanced fruit set in 15 year old trees of 
Japanese persimmon and 12 year old grape vines. Exogenous 
application of BL mitigated chilling stress in Leymus chinensis 
(Trin.) Tzvel by modulating morphological, physiological and 
biochemical traits [88]. Dong et al. [89] studied that treatment 
of a BR-analogue (BR-TS303) increased the resistance of 
Arachis hypogaea plant grown under chilling stress. Foliar 
treatment of 24-epiBL resulted in enhanced photosynthesis, 
anti-oxidant defenses and protected eggplant (Solanum 
melongena L.) seedlings from chilling stress [90].

Seed supplementation with TNZ303 which is mixture of 
jasmonic acid and BR-derivatives mitigated the formation of 
deformed leaves in cucumber plants treated subjected to 
cold stress [91]. Treatment of 0.01% BL solution increased the 
yield as well as the resistance to autumn low-temperature 
damage in rice crop [10]. Even a proteomics study also 
revealed the mitigative ability of BRs subjected to chilling 
stress in mung bean epicotyls [92]. Aghdam & 
Mohammadkhani [93] observed that postharvest 
supplementation of BL resulted in enhanced chilling stress 
tolerance in tomato fruit where as Wu [94] observed that 
supplementation of BRs enhanced the chilling resistance in 
Dendrobium huoshanense.

Supplementation with BRs increased the winter survival 
of winter rye (Secale cereale L.) by increased photosynthetic 
capacity [95]. Further, Pociecha et al. [96] also studied that 
pre-treatment with 24-EpiBL modified the cold-induced 
photosynthetic acclimation mechanisms and PGR responses 
of perennial ryegrass in cultivar-dependent manner. 24-EpiBL 
enhanced plant tolerance to low temperature stress in 
Lycopersicon esculentum Mill [97] and also mitigated the 
chilling-induced oxidative stress in pepper by enhancing 
antioxidative systems as well as maintenance of photo system 
II [98]. Hirai et al. [99] reported that BL improved the ripening 
of rice plants subjected to low temperature condition. 
Recently, Tavallali [100] observed that vacuum infiltration of 
24-epiBL significantly delayed the chlorophyll degradation 

and maintained the quality of lime fruit during cold storage, 
thus increasing its shelf life. Even, Xia et al. [101] observed 
that BR-mediated apoplastic H2O2-glutaredoxin 12/14 
cascade that regulated the antioxidant capacity in response 
to chilling stress in tomato plants.

BRs in mitigating Freezing/Frost Stress 
in Plants

Eremina et al. [102] reported that BRs participated in 
controlling the basic and acquired freezing tolerance of 
plants. Ma et al. [103] observed that foliar treatment of BRs (1 
× 10−6 mol L−1) increased the growth and photosynthesis in 
terms of Stomatal conductance (Gs), intercellular CO2 
concentration (Ci), transpiration rate (Tr) and photosynthetic 
saturated light intensity (LSP) in rapeseed (Brassica napus L.) 
subjected to freezing stress. Gallo et al. [12] observed that BRs 
mitigated the late frost stress in Fagus sylvatica L. plantation 
by improved growth performance and resistance.

Conclusion
The ability of BRs in mitigating different temperature 

stresses like heat, chilling as well as freezing is an established 
fact and the research of BRs as potential mitigators of various 
abiotic stresses especially temperature stress is gaining much 
importance in the current scenario of environmental stress 
research. Sadura and Janeczko [104] aptly stated that BRs are 
capable of inducing tolerance to high and low temperature in 
plants by modulating various physiological and molecular 
mechanisms. Further, Filek et al. [105] studied that BRs 
mitigated low temperature stress in winter wheat seedlings 
by regulating its membrane structure. Kaur et al. [9] observed 
that application of 28-homoBL regulated the antioxidant 
enzyme activities and gene expression in response to 
temperature-induced oxidative stress in Brassica juncea. 
Vardhini and Anjum [106] stated that BRs have the ability in 
overcoming various abiotic stresses in plants by positively 
modulating the antioxidative system of the plants. It is a well 
known fact that there is always a threat for the plants to face 
extreme heat or extreme cold temperatures due to the 
constant changes in the environmental conditions across the 
globe [107]. Hence, the present review article focuses on the 
role of BRs as potential PGRs that are capable of mitigating 
temperature stress (high temperature, low temperature and 
freezing) which is one of the main abiotic stresses that the 
plants are facing in the current scenario of ever changing 
temperature regimes.
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