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Abstract
ER = EPR is a conjecture in physics, stating what the entangled particles are 

connected by a wormhole (Einstein-Rosen bridge or ER bridge for short), and the 
Einstein-Podolsky-Rosen paradox (or EPR paradox) is an influential thought experiment 
in quantum mechanics, in which should mean that general relativity and quantum field 
theory can somehow unify. In pursuit of this goal, we introduce the notion of pseudo-
association group (or pa-group). We prove that some groups are pa-groups. As a matter 
of fact, the pa-group is determined by its commutative idempotent semigroup or 
∧-semilattice . These results show some interesting properties, but most interesting is 
that this paper offers a new and simple but rigorous and abundant proof of the ER=EPR 
conjecture by using some identity of pa-groups. So, we can say the conjecture is correct.
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Introduction
As a basic concept of one classic algebra, a group is an algebraic structure consisting 

of a set of elements equipped with an operation that combines any two elements to 
form a third element-and the operation satisfies four conditions called the group 
axioms, namely closure, associativity, identity and invertibility [1]. But what is really 
interesting is that more general structures are defined by relaxing some of the axioms 
defining a group [2]. And more importantly, group theory has been made on a 
fantastically wide range of uses [3-5]. In the bold and shorter essay offers a new algebraic 
structure, which is called the pseudo-association group (pa-group for short). We discuss 
some properties and make the commutative diagram for pa-groups. We have to 
demonstrate the significance of the Λ-semilattice and use it into a result in pa-groups. 
We will also illustrate it with one example.

In recent years, the theory of everything has increasingly been about quantum 
gravity. There has been tremendous interest in researching the grand unification of 
quantum mechanics and gravity in the universe; the quantum entanglement has that 
honor that has put it in wormhole. Maldacena, Susskind, Cowen and others considered 
the problem of a related conjecture, i.e., ER = EPR; it is a conjecture in physics, it’s what 
it is connected by a wormhole (or known as Einstein-Rosen bridge) [6]; the conjecture 
was proposed by Leonard Susskind and Juan Maldacena [7] in 2013. Testing the ER = 
EPR hypothesis to see if it is mathematically consistent with everything else that is 
known about entanglement and wormholes, so we present fine-structure these two 
considerations to make a rigorous proof of the conjecture. To know which conjecture 
was correct, we introduce the notion of pseudo-association group (pa-groups), it’s a 
real to mathematical theory to study the problem (i.e., spacetime with quantum 
entanglement [8]). Wormhole physics, similar to the quantizing gauge field theory has 
an algebraic structure. Here, the new pa-groups can be used to study some of the 
peculiar effects of wormhole.
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pa-Groups
We introduce a certain pseudo-association principle for 

the theory of groups. Let Ω be an arbitrary nonempty set. We 
denote by Pas (Ω) the set of all bijection from Ω to itself. 
These bijection on Ω are also so-called pseudo-associations, 
and if Ω finite, this is, of course, the new term. The object Pas 
(Ω) is called the pa-group on Ω, and the subgroup of Pas(Ω), 
denoted by Pas(⟨Ω⟩), which we are about to define.

Definition 1

Let Ω be an arbitrary set and let G be a group. We say that G 
is a Pas (Ω) on Ω is any nonempty subset P ⊆ Pas (Ω) with the 
following properties:

(PAG 1) P is closed under a pseudo associative binary 
operation •.

(PAG 2) For each x ∈ P, 1 • x = x = x • 1.

(PAG 3) For each x ∈ P, there exists x–1 ∈ P such that x • x–1 = 
1 = x–1 • x.

(PAG 4) For all x, y, z ∈ P, (x • y) • z = x • (z • y).

In addition to abelian groups, Definition 1 allows such 
objects as the non assocative groups of the integers, the 
multiplicative groups of the positive rationals, and the groups 
of n × n nonsingular matrices over fields. 

Definition 2

A mirror is called quasi-group G with at identity element 1 
with an associative binary operation • defined on G such that 
there exist 1 ∈ G if it satisfies the axioms:

(QUG 1) 1 • x = x = x • 1 for all x ∈ G and

(QUG 2) 1 • (x • y) = (1 • y) • x = y • x for all x, y ∈ G.

Definition 3

Let (Y, •) be a pa-group and let (Y, ℘) be a topological space. 
If

•: Y × Y → Y and (x, y) |→ x • y

be a continuous mapping from the product space (Y × Y, ℘) 
to the topological space (Y, ℘), where ℘ is product topology 
of Y. Then we say (Y, ℘, •) is a topological pa-group.

Definition 4

If (f (x, y, z), g (x, y, z)) = 1. Then we say that f (x, y, z) and g(x, 
y, z) are coprime topological pa-groups (Y, ℘, •) for all x, y, z 
∈ Y. Let h (x, y, z), f (x, y, z) and g (x, y, z) be ternary polynomial. 
Suppose the following condition hold:

(WHT 1) h (x, y, z) = (z • y) • x.

(WHT 2) f (x, y, z) = (x • y) • z.

(WHT 3) g (x, y, z) = (x • z) • y.

Definition 5

If 

(h (x, y, z), f (x, y, z)) = 1 and (h (x, y, z), g(x, y, z)) = 1.

Then 

(h (x, y, z), f (x, y, z) • g (x, y, z)) = 1.

Theorem 1

Let G be a group with an associative multiplication and 
suppose there exists unique element x, y ∈ G such that

x • y = 1 • ( y • x ).

Then G is a commutative group or abelian group.

Proof

This is immediate by Definition 1 and Definition 2. We have
x • y 
= (1 • x) • (1 • y) (by (QUG 1))
= (1 • (1 • y)) • x (by (P A G  4))
= (1 • y) • x (by (QUG 2))
= y • x. (by (QUG 2))

Certainly, we have
y • x 
= (y • x) • 1 (by (QUG 1))
= 1 • (y • x) (by (QUG 1))
= x • y. (by the hypothesis of theorem)

Theorem 2

Let G be a group. Then Pas (Ω) ≅ G only when abelian group 
conditions are met.

Proof

Let x, y, z ∈ G and Ω. By Theorem 1. Since y • z = z • y. We have 

x • (y • z) = (z • y) • x, and we see that

G Route 1: (z • y) • x = z • (x • y) = (x • y) • z and

G Route 2: (z • y) • x = x • (z • y) = (x • y) • z.

Figure 1 is diagram showing the relevant groups and maps ⟨G, 
Pas (Ω), abelian⟩, where abelian is a corresponding law, i.e. 
abelian fA: G → Pas (Ω). 

Figure 2 is commutative diagram. Then Pas (Ω) ≅ G.

Figure 1. The Abelian Maps G to Pas (Ω).
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Figure 2. The Commutative Diagram for x, y, z, Identity Element 1, 
and Composition of Mappings.

Definition 6

Let G be a nonempty finite set. Suppose the following 
conditions hold:

(GPA 1) G is an abelian and

(GPA 1) G is a Pas(Ω).

Then we say that G is a group.
Now if X ⊆ Pas(Ω) is any subset, then we define the 

normalizer of X in Pas(Ω) to be the set

NP(X) = {p ∈ Pas(Ω) | X p = X}.
Here is an Example 1 and its Remark 1.

Example 1
The simple case is n = 3. Let G = {α, β, γ}. We compute the 
multiplication table, is show in Table 1.

Table 1. Pseudo-association operation
· α β γ
α α β γ
β β γ α
γ γ α β

Then (G, •) is an abelian and is a pa-group.

Solution 1 (Proof). 

Apply Theorem 2 and this completes the proof.

Solution 2. 

It’s very easy to compute it directly. 

Remark 1

Strictly speaking, in constructing 54 (or 2×33) combinations of 
G, but since

a • x = x • α = x for all x ∈ G,

We need to compute that up to 16 (or 2×23) of combinations.

Theorem 3

Let P be a group of Pas (Ω) and let X ⊆ P be a subset such that 

x • y = y • x for all x, y ∈ X.

Then ⟨X ⟩ is abelian.

Proof
Let CP(X) is a subgroup. We can write
CP(X) = {y ∈ P | x • y = y • x for all x ∈ X}.
It follows that
X ⊆ ∩x∈X Cp(x).
We conclude that
⟨X⟩ ⊆ CP(X) and X ⊆ CP(⟨X⟩).
We know that ⟨X⟩ ⊆ CP(⟨X⟩). Therefore, ⟨X ⟩ is abelian. 

Corollary 1

Let X, H ⊆ Pas(Ω) be subgroups. If H ⊆ NP(X ). Then

X • H = H • X, and X • H is a subgroup of Pas(Ω).

Corollary 2

Let X be any group and let P be a pa-group. Then P ≅ X.

Theorem 4
Let P ⊆ H ⊆ Pas (Ω ). Then H ◁ Pas (Ω ).

Proof

Let Pas(Ω) ∕ P be abelian. Since H ∕ P ⊆ Pas(Ω) ∕ P, we have 

H ∕ P ◁ Pas(Ω) ∕ P, and, in fact

φ: Pas(Ω) → Pas(Ω) ∕ P be the canonical homomorphism, we 
have

φ((Pas(Ω))n) = (Pas (Ω) ∕ P)n, and thus H ◁ Pas(Ω). 

One of the major applications of actions is for lattice operation 
∧, we give the following Theorem 5.

Theorem 5

Let (S;∧) be the commutative idempotent semigroups, and let 

x • y = ¬ x∧y for all x, y ∈ S.

Where ¬ is an order-reversing involution. Then S is a Pas(Ω).

Proof 

Let x, y, z ∈ S and 1 is the greatest element. Then the binary 
operation ∧ is closed in this semilattice S.

We prove (PAG 2). By Theorem 1. Then
1 • x 
= ¬ 1 ∧ (¬ x ∧ 1) 
= (¬ x ∧ 1) ¬ 1
= ¬ x ∧ (1 ¬ 1)
= ¬ x ∧ 1
= x • 1.

Obviously, x • 1 = x = x ∧ 1.

Using the same method, we prove (PAG 3). Then 
x • x ﹣1

= ¬ 1 ∧ (¬ x ﹣1 ∧ x)
= (¬ 1 ∧ ¬ x ﹣1) ∧ x
= ¬ (1 ∧ x ﹣1) ∧ x
= x﹣1• x.
Clearly also x ﹣1• x  = 1 = x ﹣1 ∧ x .
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We prove (PAG 4). Then
x • ( z • y )
= ¬ x ∧ (¬ z ∧ y)
= (¬ x ∧ ¬ z) ∧ y
= y ∧ (¬ x ∧ ¬ z )
= ( y ∧ ¬ x ) ∧ ¬ z
= (x • y ) • z.

This proof is now complete.

Corollary 3

Let S be the semilattice of commutative idempotent 
semigroups and assume that

x • y = ¬ x ∧ y for all x, y ∈ S.

Then S is a quasi-group Gq.

Conjecture and Proof
This section describes the structure of the proof of the ER 

= EPR conjecture. Raamsdonk’s essay, originally published in 
the General Relativity and Gravitation [8] has been concerned; 
this illustrates the wormhole compatibility with the quantum 
entanglement. This conjecture ER = EPR is an extrapolation of 
the observation that a maximally extended AdS-Schwarzschild 
black hole, which is a nontraversable wormhole, is dual to a 
pair of maximally entangled thermal conformal field theories 
via the AdS/CFT correspondence. In fact, a similar idea was 
actually first proposed by Friedwardt Winterberg [9]. 
Maldacena discovered that the boundary and the bulk (or 
known as Anti-de Sitter space (AdS)) are completely 
equivalent. Susskind and Tadashi’s [10,11] paper, provided a 
strong mathematics tool for the quantum entanglement. But, 
we examine that conjecture from different point of view, 
which is group theory, and give a new proof. It gives us some 
clues where to look structure of wormhole.

The following conjecture is the most natural question and 
is the most basic conjecture in modern physics. 

Theorem 6 (Maldacena-Susskind’s Conjecture)
If any two particles are connected by entanglement. Then 

they are effectively joined by a wormhole. And vice versa: the 
connection that physicists call a wormhole is equivalent to 
entanglement.

Proof
Note that there is some association between the 

wormhole and quantum entanglement to do mathematics. 
There associations, which mathematically from that the pa-
group, as mentioned Theorem 2, we can demonstrate that the 
quantum computing is possible, i.e., as shown in figure 2, 
quantum can work (or compute) in there two paths (e.g. G 
Route 1 and G Route 2 in proof of Theorem 2) in both at the 
same time, to perform a series of native operations in one trip 
to the wormhole, the proposed scheme can provide highly 
stable and accurate results.

For explain the phenomenon of entanglement, we find 
four interconnected things, that is, the notation A, B, C and D 
in (Figure 3). Physics say, can be related in six ways, C and D 
be two wormholes; mathematics say, C and D be multiply-
connected spaces. The proof of Theorem 2 provides the 
accreting black hole for their existence in universe. More 
broadly, a black hole can accrete matter into itself as the 
matter falls or is pulled towards it. The accreting material then 
orbits around the black hole, forming an accretion disk. The 
pattern is shown in figure 2 and figure 3 for the black hole 
— wormhole — quantum entanglement — particle computing 
— which has three particles x, y and z (e.g. the three pions, 
(π+, π0, π–)) as its operations in orbit. The arrows indicate the 
direction of transformation of the particles in universe. The 
wormhole may be expanding and contracting - i.e. wormhole 
computing. In some rhythmic way is caused by quantum 
entanglement. Namely, they are different ways of describing 
the same underlying reality. 

Think of a three-dimensional internal space C and D as 
anti-de Sitter space (AdS), it is commonly referred to as the 
bulk. The other model is also filled with elementary particles 
in A and B as particle computer and communications, the 
boundary particles y and z into the vortex of a black hole and 
in the wormhole for calculations, just like a computer. There 
are good quantal reasons why wormhole may seem to have a 
certain priority for us, because entanglement lets the 
measurement of one particle instantaneously determine the 
state of a partner particle, no matter how far away it may be 
- even on the other side of the Milky Way. As far as the pa-
group, really both wormhole functions Ω (x) and entanglement 
functions ζ (x) are, on a par. An integer n, define a function θ: 
Ω (x) → ζ (x) is said to be a class function on pa-group. It 
follows that

Ωi (x) θ = ζ j(x) for 1 ⩽ i ⩽ j ⩽ n, 	 (1)

Where i stands for some internal index counting different 
species of particles and j stands for some external index 
counting different species of particles. For example, we have 
the pa-group for the pions (π+, π0, π–) on three states (i = 1, 2, 
3). This map θ is surjective since Ω (x) generates ζ (x), i.e. the 
wormhole is expanding and contracting. So, the ER = EPR 
conjecture is true.

Remark 2
We are using figure 3 to explain our ideas, we have two 

wormholes makes it possible for the particles of entanglement, 
and we can have a physical moment when we decide how we 
want to calculate it. For pa-groups to explain the distinction 
between worm hole and entanglement has lost. Pions, as a 
reasonable counterpoint to the pa-group of wormhole, has 
played equally important role, it may be that for the extreme 
conditions at the Big Bang a description. In a nutshell, ER = 
EPR.
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Figure 3. The figure shows the particles of entanglement in the two 
wormholes.

Conclusions
In practice, of course, the pseudo-association law, 

introduced by the pa-BCL+ algebras [11], but this paper 
modified to take advantage of the peculiarly available groups. 
The problem of homomorphism had been overcome in pa-
groups. Interestingly, pa-groups have a close relationship to 
∧-semilattice. Deserved to be mentioned, as application of 
the theory of groups we can from quantum entanglement 
point of view it is important to research that this mysterious 
ER = EPR questions have on our motivation via the pa-groups, 
getting down to the article.
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