Zero Vector and AT Math

Paul T E Cusack*

BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada

Article Info

*Corresponding author:

Paul T E Cusack
BScE, DULE
23 Park Ave
Saint John, NB E2J 1R2
Canada
Tel: +1-506-652-6350
E-mail: St-michael@hotmail.com

Received: November 28, 2018
Accepted: December 20, 2018
Published: January 17, 2019

Citation: Cusack PTE. Zero Vector and AT Math. Int J Cosmol Astron Astrophys. 2019; 1(1): 16-17.
doi: 10.18689/ijcaa-1000106

Copyright: © 2019 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published by Madridge Publishers

Abstract

From Linear Algebra we have a vector called the aero vector. It has interesting properties that lead to fundamental universal constants: the golden mean parabola; the gravitational constant, the super force and moment.

Keywords: Zero Vector; Astrotheology; Linear Algebra

Introduction

The Zero Vector $(0,0,0 \ldots . .0)$ is an interesting vector. It is perpendicular to every other vector and to itself. From this, we can derive the golden mean parabola; the gravitational constant, the super force and moment. We begin with the aero vector [1-3].
Given that:
$\{0\} \neg \lambda\left\{a_{1}, a_{2}, \ldots a_{\infty}\right\}$
$\{0\} \neg\{0\}$
Then:
$\{0\}=\sum \lambda\left\{a_{1}, a_{2}, \ldots . a_{\infty}\right\}$
$=\lambda\left\{a_{1}, a_{2}, \ldots, a_{\infty}\right\}$
$=\lambda \infty$
$\sum \lambda\left\{a_{1}, a_{2}, \ldots a_{\infty}\right\}=\cos (\pi / 2)=0$
$[\cos \theta]^{\prime}=\sin \theta$
$\sin (\pi / 2)=1$
$\cos (\pi / 2) \neg \int \sin (\pi / 2)=\int 1+\mathbb{C} 1$
Now,

$$
\sum \lambda\left\{a_{1}, a_{2}, \ldots, a_{\infty}\right\}=0
$$

$$
\rightarrow \lambda=0 \text { or }\left\{a_{1}, a_{2}, \ldots, a_{\infty}\right\}=0
$$

$$
\sum \lambda\left\{a_{1}, a_{2}, \ldots, a_{\infty}\right\}=\int 1+\mathbb{C} 1
$$

$$
\lambda \neq 0 \text { or } \lambda\left\{a_{1}, a_{2}, \ldots a_{\infty}\right\}=\int 1
$$

$$
\text { Let } \mathrm{y}=\mathrm{y}^{\prime}
$$

$\int A=1$
$a^{2} / 2=1$

$$
A=\sqrt{ } 2
$$

And,
$\int A=\int 1$
$1 / 2 A^{2}=A+C 2$
$A^{2}-A-1=0$

Golden Mean Parabola
$A^{2} / 2=A+\mathbb{C} 1$
$A^{2}=2 A$
$A=2$
$A=\{2,0,0, \ldots . .0\}$
$L=\sqrt{ }\left[a_{1}{ }^{2}+a_{2}{ }^{2}+. . a_{\infty}{ }^{2}\right]$
$2^{2}=\left[a_{1}{ }^{2}+a_{2}{ }^{2}+. . a_{\infty}{ }^{2}\right]$
$a_{1}=2$
Circ. $=$ Area'
$2 \pi R=\pi R^{2}$
$\mathrm{R}=2$
$=\mathrm{a}$
$=\mathrm{dM} / \mathrm{dt}$
Pythagoras \& Equation of a Circle
$a^{2}+b^{2}=R^{2}$
$\sqrt{ } 2^{2}+\sqrt{ } 2^{2}=2^{2}$
Consider:
$\int\left(a^{2}+b^{2}\right)=R^{2}$
$a^{3} / 3+b^{3} / 3=R^{3} / 3$
$a^{3} / 3+b^{3} / 3+2^{3} / 3$
$a=b$
$2 a^{3} / 3=8 / 3$
$G(8)=S . F$.
$2 a^{3}=8$
$a=\sqrt[3]{4}=1.587$
$=1-\sin 1$
=Moment
Because the Zero Vector Space is finite, the universe is finite.

