

International Journal of Cosmology, Astronomy and Astrophysics

Short Communication Article

Open Access

Wave Equation and AT Math

Paul T E Cusack*

BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada

Article Info

*Corresponding author: Paul T E Cusack

BScE, DULE 23 Park Ave Saint John, NB E2J 1R2 Canada Tel: +1-506-652-6350

E-mail: St-michael@hotmail.com

Received: November 28, 2018 Accepted: December 14, 2018 Published: January 9, 2019

Citation: Cusack PTE. Wave Equation and AT Math. *Int J Cosmol Astron Astrophys.* 2019; 1(1): 9-10.

doi: 10.18689/ijcaa-1000104

Copyright: © 2019 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published by Madridge Publishers

Abstract

This paper provides some insight into Cosmological Constants and how they come from the well-known Wave Equation.

Keywords: Wave Equation; Gravity Waves; Density; Period

Introduction

The Wave equation has been around since the 18th Century when d 'Alembert discovered it. In this paper, I work through a few simple calculations for the universe as described by Astrotheology Math (AT Math) [1-2].

The Wave Equation:

 $\partial^2 u/\partial t^2 = c^2 \partial u^2/\partial x^2$

a=k s"

 $s=|E|t|\sin\theta$

 $s' = (dE/dt)(dt/dt) \cos \theta$

 $s''=d^2E/dt^2 (dt^2/dt^2 (-\sin \theta))$

But G=d²E/dt² from the Clairnaut D.E.

 $s'' = G(1)(\cos \theta)$

And,

 $\partial^2 u/^2 dt^2 = a = v = \sin 45^\circ = \cos 45^\circ = 1/\sqrt{2}$

 $1/\sqrt{2}=(-0.4233)(2/3)\cos\theta$

 $\cos \theta = 2.993(6.67) = 2$

 $\theta = 114388$

In $\theta = \pi$

Or,

 $G = \cos \theta / c$

 $G = \cos \theta / [k a]$

where k=π-e

a=v=sin 45 =cos 45

 $\partial^2 u/\partial t^2 = c^2 \partial^2 u/\partial x^2$

a=c s"

Let E=t=1

Int J Cosmol Astron Astrophys. ISSN: 2641-886X

International Journal of Cosmology, Astronomy and Astrophysics

a=1/√2

c=2.99792

 $s=|E||t|\sin\theta$

 $s=(1)(1) \sin \theta$

 $s' = \cos \theta$

 $s'' = -\sin \theta$

 $1/\sqrt{2}=2.99792^2$ (-sin θ)

csc θ = 127.3 = ρ (Density)

Or $1/\rho = -\sin \theta$

 $\partial^2 u/\partial t^2 = c^2 \partial^2 u/\partial x^2$

 $\int \partial^2 u / \partial t^2 = c^2 \int \partial^2 u / \partial x^2$

a=1/√2=v

v=∫a

c=2.99792

 $1/[\sqrt{2} \times 2.9979^2] = \partial^2 u/\partial x^2$

 $\int \partial^2 u/\partial x^2 = \cos \theta$

 $\cos \theta = 0.7856$

 $\theta = 0.667 = G$

1/G=1.5=Mass Gap

The Laplacian

 $\nabla^2 \mathbf{u} = \partial^2 \mathbf{u}/\partial \mathbf{x}^2 + \partial^2 \mathbf{u}/\partial \mathbf{y}^2 + \partial^2 \mathbf{u}/\partial \mathbf{z}^2$

 $\partial^2 \mathbf{u}/\partial t^2 = c^2 \nabla^2 \mathbf{u}$

 $1/\sqrt{2}=0.4233^2 \nabla^2 u$

 $\nabla^2 u = 394 \sim 396 = 1/Period T$

Wave Equation:

 $\partial^2 E/\partial t^2 = c^2 \nabla^2 E$

Rearrange to the Clairaut Differential Equation:

 $c^2\nabla^2E - \partial^2E/^2t = 0$

But we know:

 $\partial^2 E/^2 t = G$

So,

 $c^2\nabla^2E-G=0$

 $E=Mc^2$

 $=(-1)c^2$

 $=-c^2$

 $c^2\nabla^2E$ - G=0

Aside:

 $\nabla = \partial/\partial x + \partial/\partial dy + \partial/\partial z$

 $=3(\partial/\partial x^2)$

=3 x (dM/dt)'

=3 C

 $c^2\nabla^2E-G=0$

 $c^2 \, \nabla^2 \, E$

 $=c^2(-c^2) \nabla^2$

Let C=3

 $=-c^{4}C$

=-80.7(3C)

302 C

=8.9875

 $=2.99792^{2}$

=Speed of light.

Conclusion

The wave equation shows where the mass gap, the frequency and the density as well as the gravity equation wave equation come from.

Acknowledgements

None.

Conflict of interest

The author declares that there is no conflict of interest.

References

- 1. Cusack P. Astro-Theology, Cusacks Universe. J. Phys. Math. 2016; 7(2): 8.
- 2. Steward I. In Pursuit of the Unknown. NY 2012.