## Wave Equation and AT Math

Paul T E Cusack*

BScE, DULE, 23 Park Ave, Saint John, NB E2J 1R2, Canada

## Article Info

*Corresponding author:
Paul T E Cusack
BScE, DULE
23 Park Ave
Saint John, NB E2J 1R2
Canada
Tel: +1-506-652-6350
E-mail: St-michael@hotmail.com

Received: November 28, 2018
Accepted: December 14, 2018
Published: January 9, 2019

Citation: Cusack PTE. Wave Equation and AT Math. Int J Cosmol Astron Astrophys. 2019; 1(1): 9-10.
doi: 10.18689/ijcaa-1000104

Copyright: © 2019 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Published by Madridge Publishers


#### Abstract

This paper provides some insight into Cosmological Constants and how they come from the well-known Wave Equation.


Keywords: Wave Equation; Gravity Waves; Density; Period

## Introduction

The Wave equation has been around since the $18^{\text {th }}$ Century when $d$ 'Alembert discovered it. In this paper, I work through a few simple calculations for the universe as described by Astrotheology Math (AT Math) [1-2].

## The Wave Equation:

$$
\begin{aligned}
& \partial^{2} u / \partial t^{2}=c^{2} \partial u^{2} / \partial x^{2} \\
& a=k s^{\prime \prime} \\
& s=|E| t \mid \sin \theta \\
& s^{\prime}=(d E / d t)(d t / d t) \cos \theta \\
& s^{\prime \prime}=d^{2} E / d t^{2}\left(d t^{2} / d t^{2}(-\sin \theta)\right. \\
& \text { But } G=d^{2} E / d t^{2} \text { from the Clairnaut D.E. } \\
& s^{\prime \prime}=G(1)(\cos \theta) \\
& \text { And, } \\
& \partial^{2} u /^{2} d t^{2}=a=v=\sin 45^{\circ}=\cos 45^{\circ}=1 / \sqrt{ } 2 \\
& 1 / \sqrt{ } 2=(-0.4233)(2 / 3) \cos \theta \\
& \cos \theta=2.993(6.67)=2 \\
& \theta=114388 \\
& \text { In } \theta=\pi \\
& \text { Or, } \\
& G=\cos \theta / c \\
& G=\cos \theta /[k ~ a] \\
& w h e r e k=\pi-e \\
& a=v=\sin 45=\cos 45 \\
& \partial^{2} u / \partial t^{2}=c^{2} \partial^{2} u / \partial x^{2} \\
& a=c s^{\prime \prime} \\
& \text { Let } E=t=1
\end{aligned}
$$

$a=1 / \sqrt{ } 2$
$\mathrm{c}=2.99792$
$\mathrm{s}=|\mathrm{E}||\mathrm{t}| \sin \theta$
$s=(1)(1) \sin \theta$
$\mathrm{s}^{\prime}=\cos \theta$
$\mathrm{s}^{\prime \prime}=-\sin \theta$
$1 / \sqrt{ } 2=2.99792^{2}(-\sin \theta)$
$\csc \theta=127.3=\rho$ (Density)
Or $1 / \rho=-\sin \theta$
$\partial^{2} u / \partial t^{2}=c^{2} \partial^{2} u / \partial x^{2}$
$\int \partial^{2} u / \partial t^{2}=c^{2} \int \partial^{2} u / \partial x^{2}$
$a=1 / \sqrt{ } 2=v$
$v=\int a$
c=2.99792
$1 /\left[v 2 \times 2.9979^{2}\right]=\partial^{2} u / \partial x^{2}$
$\int \partial^{2} u / \partial x^{2}=\cos \theta$
$\cos \theta=0.7856$
$\theta=0.667=G$
1/G=1.5=Mass Gap
The Laplacian
$\nabla^{2} u=\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}+\partial^{2} u / \partial z^{2}$
$\partial^{2} u / \partial t^{2}=c^{2} \nabla^{2} u$
$1 / \sqrt{ } 2=0.4233^{2} \nabla^{2} u$
$\nabla^{2} u=394 \sim 396=1 /$ Period $T$
$=3 \mathrm{C}$
$c^{2} \nabla^{2} E-G=0$
$c^{2} \nabla^{2} E$
$=c^{2}\left(-c^{2}\right) \nabla^{2}$
Let $C=3$
$=-c^{4} \mathrm{C}$
$=-80.7(3 \mathrm{C})$
302 C
$=8.9875$
$=2.99792^{2}$
$=$ Speed of light.

## Conclusion

The wave equation shows where the mass gap, the frequency and the density as well as the gravity equation wave equation come from.

## Acknowledgements

None.

## Conflict of interest

The author declares that there is no conflict of interest.

## References

1. Cusack P. Astro-Theology, Cusacks Universe. J. Phys. Math. 2016; 7(2): 8.
2. Steward I. In Pursuit of the Unknown. NY 2012.

## Wave Equation:

$\partial^{2} E / \partial t^{2}=c^{2} \nabla^{2} E$
Rearrange to the Clairaut Differential Equation:
$c^{2} \nabla^{2} E-\partial^{2} E /^{2} t=0$
But we know:
$\partial^{2} E /^{2} t=G$
So,
$\mathrm{c}^{2} \nabla^{2} \mathrm{E}-\mathrm{G}=0$
$\mathrm{E}=\mathrm{Mc}^{2}$
$=(-1) c^{2}$
$=-c^{2}$
$c^{2} \nabla^{2} E-G=0$

## Aside:

$\nabla=\partial / \partial x+\partial / \partial d y+\partial / \partial z$
$=3\left(\partial / \partial x^{2}\right)$
$=3 x(\mathrm{dM} / \mathrm{dt})^{\prime}$

