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Abstract
Superstatistics is said to be a superposition contained in two different statistics relevant 

to those non-equilibrium systems that contain intensive parameters fluctuations and a 
stationary state. In most cases when dealing with superstatistics, we usually mean those 
non-equilibrium systems that contain complex dynamics. Some considered quantities 
include chemical potential, temperature or energy dissipation which is usually measured 
on a large scale. The measurement of the above quantities will depend on different 
statistical properties portrayed by them. The results obtained according to the fluctuation 
shown can be mechanical descriptions that are different according to elective statistics. The 
purpose of this paper is to investigate superstatistics of type B as well as to generalise this 
type when the density distribution is unknown. Hamiltonian Monte Carlo has been applied 
to cover the problem of unknown distribution or not easy to sample from.
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Introduction
Ordinary statistical mechanics, due to given underlying reasons, may not be applicable 

to some particular systems. Some of these reasons can include metastability, some driving 
forces that can keep the system out of equilibrium and so on [1]. In studying a larger 
number of physical systems, Tsallis distributions are frequently observed. Many of the 
observations made are found in the driven stationary state that is usually far from 
equilibrium. According to Beck [1], a significant question is why these or similar distributions 
are frequently observed in experiments. Furthermore, another point of concern is whether 
we can be in a position to give a dynamic reason as to why Tsallis statistics occurrence is 
not a suitable class of nonequilibrium systems. The occurrence is possible. It is possible for 
an individual to come up with a class of stochastic differential equations that have 
fluctuating parameters, the process can rigorously prove can generate Tsallis statistics [2]. 
Tsallis distributions in many systems are observed for the simple reason that they can easily 
be associated with the presence of spatiotemporal fluctuations of an intensive parameter. 
They include, the amplitude of the Gaussian white noise, friction constant, inverse 
temperature, or energy dissipation in turbulent flows. Tsallis statistics naturally end in case 
where these fluctuations evolve over a long time and are distributed in regard to a particular 
distribution, the χ2-distribution. For other distributions made up of intensive parameter, in 
most cases, one obtains general statistics. However, when Tsallis statistics are contained in 
the so-called superstatistics, they can be regarded as a special case. Generalized entropies 
(294 C. Beck analogues of the Tsallis entropies) can be defined as related to these 
superstatistics from the principle, it is also possible that the generalised versions of statistical 
mechanics can be constructed from the above assumption. It has been indicated that the 
correspondents of generalised entropies are generally stable [3]. In this paper, we will have 
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to look into insights about the superstatistics concept, and also 
investigate superstatistics type B via the Bayesian approach. We 
also address a problem that is of great interest in experimental 
applications. Given a probability density, how can we check and 
determine the conjugate priori distribution? The outline of this 
paper is as follows: in the next section, we discuss and review 
superstatistics. In Markov Chain Monte Carlo for Superstatistics 
section, we introduce and formulate the problem of interest of 
this paper, and in Hamiltonian Monte Carlo sampling for 
Superstatistics section, we investigate and review a powerful 
technique called Hamiltonian Monte Carlo sampling. We 
conclude our paper in Conclusion section.

Superstatistics of Type B and Bayesian 
Theory
If the conditional probability is p(u|θ), then the probability is 
obtained. Where the probability of u is given some value of θ;

	 (1)

in the case of joint probability p(u, θ), the probability used in 
observing certain values of u and also those of certain values of θ;

	 (2)

and on the case of marginal probability p(u), the probability 
that is used in observing certain values of u and also those of 
certain values of θ;

	 (3)

Generalisation of the canonical distribution of the superstatistics 
is considered a marginal distribution. The formulas proposed 
above are related to type B superstatistics, which is the subject 
of this paper. Our purpose is to find this kind of marginal 
probability by using Bayesian theory. To investigate this, we 
review some important concepts in Bayesian Theory, which 
allow us to compute the posterior distribution of any 
distribution of interest. Using Baye’s theorem, we can calculate 
the posterior probability density function of θ:

	 (4)

where, m(x)=∫px(x|θ)π(θ)dθ. The conjugate prior gives rise to 
posterior distribution of the same form as the prior. It is 
notable that the conjugate family may exist even if px(x|θ) is 
not in the exponential family moreover, the conjugate prior 
make calculation of the posterior easier. To illustrate how 
Bayesian approach can be used to compute superstatistics 
type B, we consider some examples taken from the study of 
superstatistics by Briggs [4], which can be generalised to any 
superstatistics in similar situations.

Example 1.
The Poisson process has been used for the study of 

modeling train delay [4]. The Poisson process is given by 
p(t|β)=βe-βt. The conjugate prior of Poisson is Gamma, which 
is given by

Using eqn (4) or instead using π(θ|x) ∝ px(x|θ)π(θ) gives the 
following

This will give . Therefore, one can show 
that this result led to q−exponential distribution so the 
marginal distribution . Another example we consider 
in this paper is Gaussian.

Example 2.

The Gaussian process is given by

The conjugate prior distribution of Gaussian with known 
mean is inverse gamma, which is given by

Similarly, by using eqn (2) and following the same procedure as 
the previous example we obtained . This method 
can be used when we know the conjugate prior as well as the 
marginal likelihood. Table 1 illustrates conjugate distribution of 
some well-known probability distributions. In Hamiltonian 
Monte Carlo sampling for Superstatistics section, we show some 
method for finding the posterior when it is not easy to sample.

Table 1. Table of conjugate distributions.
Likelihood Conjugate prior Model Parameter
Normal with known mean Gamma σ2
Uniform Pareto θ
Log normal with known mean Gamma µ
Exponential Gamma λ
Gamma Gamma k
Pareto Gamma θ
Weibull Inverse gamma β

Markov Chain Monte Carlo for 
Superstatistics

In this part, we applied the Markov Chain Monte Carlo 
method to super-statistics. To the best of our knowledge this 
method has not previously been applied to superstatistics 
theory. The aim of our claim is to generalised su- perstatistics 
to type B when the conditional probability is unknown. If the 
conditional probability in Superstatistics of type B and 
Bayesian theory section is obtained where the probability of u 
is given some value of θ, as in eqn (1). Then the probability 
that is used in observing certain values of u and those of θ is 
given by eqn (2). The marginal probability is given by

	 (5)

Generalisation of the canonical distribution of superstatistics 
is considered a marginal distribution. The formulas proposed 
above are related to type B superstatistics, which is the main 
topic of this paper. Our purpose is to find this kind marginal 
probability by using Bayesian theory or Baye’s theorem (eqn 
(4)). The conjugate prior gives rise to a posterior distribution of 
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the same form as the prior. It is notable that the conjugate 
family may exist even if px(x|θ) is not in the exponential family 
moreover, the conjugate prior makes calculation of the posterior 
easier. To illustrate how the Bayesian approach can be used to 
compute superstatistics type B, we consider some examples 
taken from the study of superstatistics by Beck [2], which can be 
generalised to any superstatistics in a similar way.

Example 1. Uniform distribution. We test uniformity by 
using MCMC. The algorithm we used here is Metropolis 
Hastings algorithm (see [5] for more details of its description). 
The proposal distribution is uniform and the target distribution 
is Beta with mean 2.5 and variance 5.5. We compare the 
theoretical mean and variance of Beta distribution with 
simulation output as shown in the table below.

Table 2. Summary of MCMC simulation of Beta posterior.
Mean Std. Dev Naive SE Time-series SE

0.315846 0.151556 0.002562 0.004071

We further investigated the simulation result by 
conducting a hypothesis test using Kolmogorov Smirnov’s 
test of equality between the two samples. The test result was 
D=0.022286, p-value=0.3497. This means that both samples 
are compatible, with the same distribution.

Table 3. Diagnostic of simulation result of Beta posterior.
Acceptance Rate Rejection Rate Effective Size Half width Mean

0.1830458 0.8169542 1331.74 0.307

Figure 1. Trace plot of simulated Beta (2.5, 5.5).

Figure 2. A simulated sample from the beta posterior distribution.

Figure 3. A trace plot and density plot of simulation result of Beta posterior.

Hamiltonian Monte Carlo sampling for 
Superstatistics

The Hamilton Monte Carlo (HMC) algorithm is an example 
of the various sampling forms of the Markov Chain Monte 
Carlo (MCMC) algorithm, as it mainly entails the use of 
Hamilton evolution [6,7]. This evolution can be significantly 
explained by the use of a particle which is left to freely slide 
over a smooth surface with varying heights. In such a case, the 
potential energy of the particle at its current position is 
directly proportional to the height of the sliding surface. 
Hence the kinetic energy (KE) is given by Chaudhuri et al. [6], 

, where p is the particles momentum vector at its current 
position, and m is its mass. As the particle moves up and 
down through the smooth surface, significant changes are 
recorded in its kinetic energy. Despite the changes in the 
total energy, which is the total sum of the kinetic and potential 
energy, energy incurred is still conserved. For this reason, in 
cases where the particle moves through an un-expected 
inclining slope, it is able to maintain its initial motion to a 
position when its kinetic energy reduces to zero, before 
sliding backwards. Using HMC sampling: Let θ be the 
particle’s current position. The kinetic and potential energy 
of the particle at this position would become:

From these equations, artificial construction of the particles 
momentum vector is assumed to be p=(p

1
,…, p

d
)T, while the 

mass matrix M, becomes the symmetric positive definitive 
matrix. From this, the kinetic energy incurred is taken from a 
point N(0, M). M, in this case, may be assumed to be equal 
to mI, which is the mass of the particle. Therefore, from 
Hamiltons equation, the total energy would become [6]:

	 (6)

However, since the total energy incurred from this system is 
usually conserved, from Hamiltons equation, the derivatives 
of position θ of the particle and its momentum p over a 
given time t gives the new equation of motion as
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	 (7)

Generally, Hamilton dynamics are constant; they can be 
reversed and, at the same time, preserve their volume, making 
them fit for MCMC sampling. For this reason, no analytical 
solutions exist from the differential equation (7) above, since 
no analytical form exists for π(θ|x) either. Similarly, from 
Birdsall and Langdon [8], applying the leapfrog integration 
method in Hamilton’s equation, the time variable t is replaced 
by δ, and the current position p is replaced by θ, hence denoted 
as θ(t) and p(t) respectively. Thereafter, the position and 
momentum equations at point t+δ are given as [6]

	 (8)

The general importance of the leapfrog integration 
method is that it maintains the reversible property of 
Hamilton’s equation due to its symmetry while, at the same 
time, maintaining the exact volume. However, the Hamilton’s 
property of being continuously constant is lost due to the 
various approximations introduced that cause several errors, 
which then lead to it being rejected.

Moreover, the MCMC algorithm also makes room for an 
accept-reject step that guarantees correct order of the samples, 
which entails significant limits, as clearly depicted in the 
Langevin-Hastings algorithm, described by Leimkuhler and 
Reich [9]. According to Leimkuhler and Reich [9], new values of 
momentum vector p are randomly picked from the N (0, M) 
distribution, at the beginning of the HMC iteration. These 
Hamilton dynamics are then duplicated for T steps using the 
leapfrog method in equation (6) above, with (θ, p) as the current 
state. In the end, at the final state (θ*, p*) of the T-step trajectory, 
the most accepted equation could then be written as

	 (9)

Discussion and Conclusion
In the recent past, research about superstatistics has 

been undertaken to ensure that several discoveries have been 
made. Applications are being undertaken to explore that all 
the possible areas superstatistics can be used in make sure 
that the analysis of different quantities can be undertaken 
without any problem. Areas like statistics of cosmic rays, 
chaotic defect motion in inclined layer convection and fully 
developed hydrodynamic turbulence have been used to 
ensure that superstatistics has developed well. This is an 
indication that different scholars have been working to 
maintain intense innovation that will make superstatistics a 
better field to study. Apart from the discoveries, there are 
some areas that have been not been developed well to ensure 
that superstatistics are commonly understood. Several 

discoveries should be made in a bid to ascertain that all the 
potential areas are explored. Therefore, scholars are required 
to continually find new areas where superstatistics will be 
used, which could facilitate progress in the analysis of different 
quantities such as biology.

In summary, there has been consideration of generalised 
statistics, referred to as superstatistics. Conversely, Tsallis 
statistics in the setting is a special case found in superstatistics. 
The dynamical parameter q is also another class that can be 
used in defining all the new statistics. There has been an 
indication on how small variance of the fluctuations behaves in 
the case of universal superstatistics. When there is a large 
variance, there exists a difference in the information provided 
about the underlying complex dynamics. Where there are 
complex nonequilibrium problems, there might be a 
requirement for different types of superstatistics. Tsallis 
statistics is one of the examples of many possible new statistics 
that may exist. The measurement of the above quantities will 
depend on different statistical properties portrayed by them. 
The results obtained according to the fluctuation shown can 
be mechanical descriptions that are different according to 
elective statistics. Therefore, from the principle, it is also 
possible that the generalised versions of statistical mechanics 
can be constructed from the above assumption. It has been 
indicated that the generalised entropies, correspondents are 
generally stable. The usefulness of Hamiltonian dynamics is 
converting the density function for sampled distribution to a 
potential energy function, as well as introducing momentum 
variables to go with the original variables of interest. This 
allows us to simulate a Markov chain in which each iteration 
resamples the momentum, as well as a Metropolis update with 
a proposal found using Hamiltonian dynamics.
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