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Abstract
In this paper, we discuss the analytical expressions of velocity and heat transfer for 

a boundary layer flow with thermal radiation past a moving vertical porous plate. The 
governing non-linear differential equations are solved analytically using Homotopy 
analysis method. The results are presented as velocity, temperature, local wall shear 
stress and wall heat transfer rate profiles various values of parameter involving in the 
problem. Our analytical results are compared with the previous work and a good agreed 
is observed.

Keywords: Thermal Radiation; Porous Plate; Non-Linear Boundary Value Problem; Local 
Wall Shear Stress; Wall Heat Transfer Rate; Homotopy Analysis Method.

Introduction
The study of the flow and heat transfer in fluid past a porous surface has many 

interesting applications in the field of engineering, especially in physical and chemical 
industries [1-6]. Makinde et al. [1] investigated the Adomian decomposition approach 
to a boundary layer flow with thermal radiation past a moving vertical porous plate. 
Adomian [3] examined a review of the decomposition method in applied mathematics. 
Adomian et al. [4] investigated the solution of nonlinear ordinary and partial differential 
equations of physics. Chung et al. [7] examined the stability of steady flow in a channel 
with linear temperature dependent viscosity. Hayat et al. [8] investigated the 
hydromagnetic oscillatory flow of a fluid bounded by a porous plate when the entire 
system rotates about axis normal to the plate.

Hassanien [9] examined the heat transfer in a power law fluid over a non-isothermal 
stretching sheet. Howell et al. [10] investigated momentum and heat transfer on a 
continuously moving surface in a power law fluid. Ibrahim et al. [11] examined the 
method of similarity reduction for problems of radiative and magnetic field effect on 
free convection and mass transfer flow past a semi-infinite flat plate. Makinde [12] 
examined free convection flow with thermal radiation and mass transfer past a moving 
vertical porous plate. Sivasankaran et al. [13] investigated the natural convection heat 
and mass transfer fluid past an inclined semi-infinite porous surface. Terrill [14] examined 
slow laminar flow in a converging or diverging channel with suction at one wall and 
blowing at the other wall. Uzan [15] investigated the heat transfer to a power law fluid 
in arbitrary cross sectional ducts. Yu-shu et al. [16] examined a numerical for simulating 
non-Newtonian fluid flow and displacement in porous media. Badr et al [5] investigated 
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the numerical simulation of steady and unsteady mixed 
convection from tubes of elliptic cross-section. The study 
revealed that the effect of fluctuations on the time-average 
Nusselt number becomes more pronounced with increasing 
Reynolds number. It also revealed that the rate of heat transfer 
increases with the increase of the amplitude of fluctuations 
but decreases with the increase of frequency. Yurusoy et al. 
[17] examined the exact solution of boundary layer equations 
of a non-Newtonian fluid over a stretching sheet by the 
method of lie group analysis. This paper demonstrates the 
solution of the velocity and heat transfer in a boundary layer 
flow with thermal radiation past a moving vertical porous 
plate using Homotopy analysis method and discussed by 
graphically.

Mathematical Formulation of the Problem
Consider an unsteady flow of an incompressible fluid with 

thermal radiation past a moving vertical plate. Let the x-axis 
be taken along the plate in the vertically upwards direction 
and the y-axis be taken normal to it. Let u and v be the velocity 
components along the x and y respectively. The physical 
variables are functions of y and t only. Hence, the governing 
equations are as follows:
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The radiative heat flux term is simplified by making use of the 
Roseland approximation as in eqn (1).
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Where, α denote thermal diffusivity, k is thermal 
conductivity, σ denote Stefan–Boltzmann constant, K is 
absorption Coefficient, v is Kinematics viscosity, u,v denote 
velocity component, qr is Radiative heat flux, β is Volumetric 
expansion coefficient(Temperature), G denote Gravitational 
acceleration, t is Time, U0 denote wall velocity, Tw is Wall 
Temperature, T∞ denote ambient temperature, c is suction 
parameter, R is radiation parameter, Gr denote local Grash of 
number, Pr is Prandtl number.

The appropriate boundary conditions are
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We can define the similarity variables are as follows:
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Here the length scale is defined as
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Taking the Taylor series expansion of T 4 and neglecting terms 
with higher powers, we have
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Using the eqns. (7) and (8) into the eqns. (2) to (4) we obtained 
the non-linear ordinary differential equations are as follows:
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The corresponding boundary conditions are as follows:
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The local wall shear stress (Skin friction) can be defined as
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The Local surface heat flux
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Solution of the Non-Linear Boundary 
problem using the Homotopy Analysis 
Method

This section deals with a basic strong analytic tool for 
non-linear problems, namely the Homotopy analysis method 
(HAM) which was generated by Liao [18], is employed to solve 
the nonlinear differential eqns. (9)–(11). The Homotopy 
analysis method is based on a basic concept in topology. 
Unlike perturbation techniques like [19], the Homotopy 
analysis method is independent of the small/large parameters. 
Unlike all other reported perturbation and non-perturbation 
techniques such as the artificial small parameter method [20], 
the δ-expansion method [21] and Adomian’s decomposition 
method [22], the Homotopy analysis method provides us a 
simple way to adjust and control the convergence region and 
rate of approximation series. The Homotopy analysis method 
has been successfully applied to many nonlinear problems 
such as heat transfer [23], viscous flows [24], nonlinear 
oscillations [25], Thomas-Fermi’s atom model [26], nonlinear 
water waves [27], etc. Such varied successful applications of 
the Homotopy analysis method confirm its validity for 
nonlinear problems in science and engineering. The 
Homotopy analysis method is a good technique when 
compared to other perturbation methods. The existence of 
the auxiliary parameter h in the Homotopy analysis method 
provides us with a simple way to adjust and control the 
convergence region of the solution series.

Basic concepts of the Homotopy analysis method [18-29]

Consider the following differential equation:

N [u(t)]=0	 (16)
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Where N is a nonlinear operator, t denotes an independent 
variable, u(t) is an unknown function. For simplicity, we ignore 
all boundary or initial conditions, which can be treated in the 
similar way. By means of generalizing the conventional 
Homotopy method, Liao constructed the so-called zero-order 
deformation equation as:

	 (17)

Where p ∈ [0,1] is the embedding parameter, h≠0 is a nonzero 
auxiliary parameter, H(t) ≠ 0 is an auxiliary function, L an 
auxiliary linear operator, u0(t) is an initial guess of u(t), φ (t; p) 
is an unknown function. It is important to note that one has 
great freedom to choose auxiliary unknowns in HAM. 
Obviously, when p=0 and p=1, it holds:
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respectively. Thus, as P increases from 0 to 1, the solution φ (t; p) 
varies from the initial guess u0 (t) to the solution u (t).

Expanding φ (t; p) in Taylor series with respect to p, we have:
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If the auxiliary linear operator, the initial guess, the auxiliary 
parameter h, and the auxiliary function are so properly chosen, 
the series eqn.(18) converges at p=1 then we have:
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Differentiating the eqn. (16) for m times with respect to the 
embedding parameter p, and then setting p=0 and finally 
dividing them by m!, we will have so-called m th order 
deformation equation as:
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Applying L-1 on both side of eqn.(22), we get
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In this way, it is easily to obtain um for m ≥ 1, at Mth order, we 
have
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when M→ +∞, we get an accurate approximation of the 
original eqn.(16). For the convergence of the above method 
we refer the reader to Liao [19]. If an eqn. (16) admits unique 
solution, then this method will produce the unique solution.

Approximate analytical expressions of 
the non-linear differential eqns. (9) and 
(10) using Homotopy analysis method
In this section, we find the analytical expressions for the eqns.
(9) and (10) with the help of the eqn.(10). We construct 
Homotopy for the eqns.(9) and (10) are as follows:

	 (27)
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The approximate solution of the eqns.(27) and (28) are as 
follows:
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The initial approximations are as follows: 
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Substituting the eqns. (29) and (30) into the eqns. (27) and 
(28) respectively we get
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Comparing the coefficients of p0, p1 in the eqns.(35) and (36) 
we get

	 (37)

	 (38)

	 (39)

	 (40)

Solving the eqns. (37)-(40) with the help of the eqns. (31)-(34) 
we get the following results:
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Substituting the eqns. (43) and (44) into an eqn. (46) and 
using the eqns. (41) and (42) into an eqn. (47) we get the 
following:

	 (48)

	 (49)

The analytical expression of the dimensionless skin friction 
using the eqn. (13) is given by Skin friction

	 (50)

The analytical expression of the Wall heat transfer rate using 
the eqn. (15) is given by

	 (51)

Results and Discussion
Figures 1 and 2 represents dimensionless temperature θ( y) 

versus dimensionless distance y. From figure 1, it is noted that 
the temperature increases when the radiation parameter R 
increases, and in some fixed values of the other dimensionless 
parameters. From figure 3, it is inferred that when the suction 
parameter c increases the corresponding temperature 
decreases in some fixed values of the other parameters.

Figure 1. Dimensionless temperature θ(y) versus the dimensionless 
distance y. The curves are plotted using the eqn.(48) for various 

values of the radiation parameter R, and in some fixed values of the 
other dimensionless parameters c, Gr, Pr.

Figure 2. Dimensionless temperature θ(y) versus the dimensionless 
distance y. The curves are plotted using the eqn. (48) for various 

values of the suction parameter c, and in some fixed values of the 
other dimensionless parameters R, Gr, Pr.

Figures 3 and 4 represent dimensionless velocity f(y) 

versus dimensionless distance y. From figure 3, it is noted that 
the velocity increases when the radiation parameter R 
increases, and in some fixed values of the other dimensionless 
parameters. From figure 4, it is inferred that when the suction 
parameter c increases the corresponding velocity decreases 
in some fixed values of the other parameters.

Figure 3. Dimensionless velocity f(y) versus the dimensionless 
distance y. The curves are plotted using the eqn.(47) for various 

values of the radiation parameter R, and in some fixed values of the 
other dimensionless parameters c, Gr, Pr.

Figure 5 represents wall heat transfer rate Nu versus 
radiation parameter R. From figure 5, it is observed that the 
wall heat transfer rate increases when the suction parameter 
increases, and in some fixed values of the other dimensionless 
parameters. Figure 6 represents wall shear stress versus 
radiation parameter R. From figure 6, it is inferred that the 
wall shear stress decreases when the suction parameter 
increases, and in some fixed values of the other dimensionless 
parameters.
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Figure 4. Dimensionless velocity f(y) versus the dimensionless 
distance y. The curves are plotted using the eqn.(47) for various 

values of the suction parameter c, and in some fixed values of the 
other dimensionless parameters R, Gr, Pr.

Figure 5. Dimensionless wall heat transfer rate Nu versus the 
Radiation parameter R. The curves are plotted using the eqn. (50) 
for various values of the suction parameter c, and in some fixed 

values of the other dimensionless parameters Gr, Pr.

Figure 6. Dimensionless wall shear stress versus the Radiation 
parameter R. The curves are plotted using the eqn. (49) for various 
values of the suction parameter c, and in some fixed values of the 

other dimensionless parameters Gr, Pr.

Conclusion
In this paper the Homotopy analysis method is employed 

to mathematical study of a boundary layer flow with thermal 
radiation past a moving vertical porous plate. The approximate 
analytical expressions of the velocity and temperature profiles 
are derived mathematically and graphically using the 
Homotopy analysis method. The approximate analytical 
expressions of the wall shear stress and wall heat transfer rate 
are also derived using the analytical expressions for the 
velocity and temperature profiles. We also discussed the 
graphical representations of the wall shear stress and the wall 
heat transfer rate. The Homotopy analysis method can be 
easily extended to solve the other non-linear boundary value 
problems in physical and chemical sciences.
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Appendix: Nomenclature
Symbol Meanings

α Thermal diffusivity

K Thermal conductivity

σ Stefan-Boltzmann constant

K Absorption Coefficient

v Kinematics viscosity

u,v Velocity component

qr Radiative heat flux

β Volumetric expansion coefficient

G Gravitational acceleration

t Time

U0 Wall velocity

Tw Wall Temperature

T∞ Ambient temperature

C Suction parameter

R Radiation parameter

Gr Local Grashof number

Pr Prandtl number
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