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Abstract
Bioinformatics as it relates to medicine involves the processing of the genetic 

information with the hope of generating the genetic basis of health and disease that 
could result in the efficient discovery of tailored and targeted drugs. Pharmaceutical 
bioinformatics therefore, deals with research problems requiring biological-sequence 
data, important sources of information, methods of access and the role of libraries and 
information centers as they relate to drug discovery, development and biotransformation. 
Drug biotransformation (metabolism) gives metabolites with physicochemical and 
pharmacological properties that differ significantly from those of the parent drug. It is 
usually investigated by experimental and computational approaches. Due to the 
importance of drug metabolism in terms of safety and efficacy, it becomes imperative 
to have efficient and reliable ways to predict drug metabolism in vitro, in silico, and in 
intact organisms. Molecular modeling and data modeling are in silico tools available for 
predicting drug metabolism. Prediction of drug metabolism has applications in drug 
design, medicinal chemistry, pharmacokinetics, toxicology and helps in the structural 
characterization of metabolites. The present study gives a comprehensive review of 
bioinformatics, biological processes (DNA and protein sequences), biological databases, 
search tools and similarity searching. The study also considered pharmaceutical 
bioinformatics and its application to drug metabolism.

Keywords: Bioinformatics; Pharmaceutical Bioinformatics; Prediction of Drug Metabolism.

Introduction
Bioinformatics is a branch of science that incorporates biology, computer science 

and information technology. It involves collection, organization, analysis, manipulation, 
presentation and distribution of biological data to help solve biological problems on the 
molecular level using computer technology. Its basic objectives involve data management 
and knowledge discovery through amalgamation of computers, statistics and molecular 
biology. As an interface between modern biology and informatics, it entails discovery, 
development and implementation of computational algorithms and software tools in an 
effort to facilitate an understanding of the biological processes [1,2]. Biological processes 
occur in cells. Cells possess a central core known as the nucleus that is the store house 
of a vital molecule called DNA. The DNA molecules are packaged in units called 
chromosomes. The chromosomes and DNA are together known as genome. The 
genomes have specific regions called genes that spread throughout the genomes. The 
RNA likewise contain information however, their major function is to copy information 
from DNA selectively and travels to protein production sites where the information is 
translated into proteins. Proteins are built out of functional units known as domains (or 
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motifs) and the domains have conserved sequence [3]. The 
biological process is presented in figure 1.

Figure 1. Biological processes

Classification of Bioinformatics
Bioinformatics classification could be based on (i) 

development and implantation of tools that will allow different 
types of information to be effectively and efficiently accessed 
and managed (databases). The development of bioinformatics 
tools is governed by the following biological processes: (a) 
DNA sequence- determines protein sequence (b) protein 
sequence- determines structure (c) protein structure- 
determines protein function [4], (ii) analysis and interpretation 
data from various sources such as nucleotide and amino acids 
sequences, protein domains and protein structure (search 
tools). (iii) development of new algorithm and statistics in 
order to assess relationships among numbers of large data 
sets (similarity searching) [5].

Premier databases
As a result of the large volume of data that has been 

produced, its organization and storage becomes necessary. 
Thus, databases that constitute a large number of biological 
information were created, stored, processed and provide 
access to scientists [6]. National Center for Biotechnology 
Information (NCBI) is the world’s premier website for 
biomedical and bioinformatics research. It was established in 
1998 as national (USA) resource for molecular biology 
information. NCBI creates public databases, carries out 
research in computational biology, analyzes genome data 
using in-house developed software tools and provides 
understanding of molecular processes affecting human health 
and diseases through dissemination of biomedical 
information. Its service units include PubMed (the 
bibliographic database), Gen Bank [nucleotide sequence 
database, protein sequences, short RNA fragments (ESTs), 
cancer genome anatomy project (CGAP) - gene expression 
profiles of normal, pre-cancer, and cancer cells from a wide 
variety of tissue types, single nucleotide polymorphisms 
(SNPs) - which represent genetic variations in the human 
population and online mendelian inheritance in man (OMIM) 
- a database of human genetic disorders]. Each sequence in 

GenBank has a unique “accession number”. The other world 
premier databases are DNA Data Bank of Japan (DDBJ), 
European Bioinformatics Institute (EBI) and European 
Molecular Biology Laboratory (EMBL).

Biological databases
Biological databases (Table 1) are huge databases that 

assist scientists to understand and explain biological 
phenomena such as structures of biomolecules and their 
interactions; metabolism of organisms and evolution of 
species [7].

Table 1. Biological databases
Biological databases Information contained
Bibliographic Literature
Taxonomic Classification
Nucleic acid DNA
Genomic Gene level
Protein Protein
Protein families, domains, classification of proteins,
Functional sites 

identification of 
domains

Enzymes/metabolic pathways Metabolic pathways

The biological databases (Table 2) are categorized into 
primary databases (contain sequence data for DNA, protein) 
and secondary databases (contain results from the analysis of 
the sequences in the primary databases). The primary 
databases are members of the International Nucleotide 
Sequence Database Collaboration (INSDC) and transfer the 
deposited information daily among each other. The secondary 
databases are curated and present only information related 
to proteins, describing aspects of its structure, domains, 
function, and classification. Information about DNA, proteins, 
protein functions normally stored in an intelligent fashion 
(databanks) enable scientists solve problems easily and 
quickly.

Such databanks include:
(a) Protein structure: Protein Databank (PDB)
(b) Protein sequence and their functions: Swiss-Port
(c) �Interaction about enzymes and their functions: ENZYME
(d) Nucleotide sequences of all genes: EMBL 

Employing databanks, all kinds of comparisons and 
search queries can be carried out [8,9].

Table 2. Primary and secondary databases
Primary databases
Nucleic acid (DNA) Protein
EMBL 
Genbank 
DDBJ 

Swiss-PROT
TREMBL
PIR

PDB 

Secondary databases

________________________________________________________________

ProSite, Pfam, ProDom, BLOCKS, PRINTS

FASTA, SCOP 

________________________________________________________________
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Search tools
Entrez is the text-based search and retrieval system used 

by NCBI for all the major databases such as PubMed (provides 
access to citations including abstracts, full-text journal 
articles), nucleotide and protein sequences, protein structures, 
taxonomy etc. Entrez is much more than a tool for finding 
sequences by keywords, it can also search for keywords such 
as gene names, protein names, and the names of organisms 
or biological functions. Entrez is internally cross-linked. For 
instance, (i) DNA and protein sequences are linked to other 
similar sequences 

(ii) 3-D structures are linked to similar structures (iii) 
Medline (bibliographic database coverings fields of medicine, 
dentistry, nursing veterinary medicine etc.) citations are linked 
to other citations (PubMed) that contain similar keywords. 
This potential for horizontal movement through the linked 
databases makes Entrez a dynamic search and retrieval tool. 
Other search tools are PAM matrix (proteins), RasMol (simplest 
PDB viewer) etc.

Similarity searching
Consists of, a variety of computer programs used to make 

comparisons between DNA sequences. BLAST (Basic Local 
Alignment Search Tool) is complex and the most popular. It 
generates an E-value for every match – (the same as the P 
value in a statistical test). A match is generally considered 
significant if the E-value<0.05 that is smaller numbers are 
considered to be more significant. Similarity searching relies 
on the concepts of alignment and distance between pairs of 
sequences. Distances can only be measured between aligned 
sequences for example match versus. Mismatch at each 
position.

BLASTX makes automatic translation and allows DNA 
query sequence to compare with protein databanks, while 
TBLASTN makes automatic translation of an entire DNA 
database and allows it to be compared with protein query 
sequence [10].

Pharmaceutical Bioinformatics
Bioinformatics is of importance to Pharmacy 

(Pharmaceutical bioinformatics) in the areas of (i) drug 
discovery, designing and development, (ii) product/formulation 
designing, (iii) Pharmacokinetics and pharmacology. 
Pharmaceutical bioinformatics deals with scientific area of 
computer based technologies and informatics, computational 
methods for mapping processes of the cells (genetic 
information) and understanding how to use these properties to 
effectively discover and develop novel drugs. The novel drugs 
could be tailored or targeted drugs. Target drugs are drugs 
designed specifically to act on particular genes and their 
corresponding protein identified to be responsible for certain 
disease conditions. While tailored drugs refer to drugs designed 
to handle the needs of a specified genetic sub-group of the 
entire population [11,12]. The discovery and development 
process involve the employment of computer-aided drug 
design (CADD) methods. CADD methods are dependent on 

bioinformatics tools, applications and databases. The methods 
entail building three dimensional (3-D) virtual compound 
libraries (databases) for in silico screening (virtual screening) by 
docking the compounds against validated drug targets, 
followed by judicious selection of virtual hits possessing 
appropriate physicochemical properties to be screened for 
biological activity [13-15]. Some libraries consist of compounds 
with activities against several diseases, e.g. the ZINC database 
[16] while others are activity focused libraries [17]. The library is 
usually filtered to eliminate irrelevant molecules through a 
concept referred to as ‘rapid elimination of swill’ (REOS) [18]. 
REOS aids to identify molecules with poor absorption, 
distribution, metabolism, elimination and toxicology (ADME/T) 
properties. Thereafter, virtual screening is carried out by 
docking the “filtered out” library (or dataset) against validated 
drug targets in order to identify promising hit compounds, 
which are then subjected to biological activity assays.

Drug Metabolism and Enzymes
Elimination of drugs from the body occurs either by the 

process of excretion (unchanged), or conversion to metabolites 
with lower affinity characteristics (biotransformation). The 
biotransformation (metabolism) of a drug substance is the 
process whereby human beings effect chemical changes to a 
drug molecule and the product of such a chemical change is 
termed a drug metabolite [19-22].

Biotransformation is very significant in drug discovery 
and development due to the formation of active metabolites 
from active drugs; active metabolites from prodrugs 
(activation) and inactive metabolites (inactivation); toxic 
metabolites (toxification), metabolites that can inhibit 
metabolic pathway(s), metabolites that have physicochemical 
properties quite different from the parent compound (s) and 
producing complex kinetics.

Drug metabolism is one of the four discrete processes in 
the pharmacokinetic phase during the biological disposition 
of a drug. Drug metabolism reactions are classified as either 
phase I (functionalization reactions), or phase II, (biosynthetic 
(conjugation) reactions [23,24].

In Phase I reactions (oxidation, reduction, hydrolysis) 
functional group (s) is introduced on the parent compound, 
generally resulting in loss of pharmacological activity; but, 
active and chemically reactive intermediates could also be 
generated. Oxidation (most common) includes aromatic 
hydroxylation, deamination of mono- and diamines, 
dehydrogenations, N-, O-, and S-dealkylation, side-chain 
hydroxylation and sulphoxide formation. Reduction includes 
reduction of nitro, nitroso and azo groups while hydrolysis is 
the biotransformation route for esters and amides. In Phase II 
conjugation reactions (biosynthetic process), a covalent bond 
is formed between a functional group on the parent 
compound (or on a phase I metabolite) with endogenously 
derived glucuronic acid, sulphate, glutathione, amino acids or 
acetate. These conjugates are highly polar (generally inactive) 
and are rapidly excreted in the urine and faces. Drug 
metabolism takes place principally in the liver, however, other 
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organs or tissues like the kidney, intestine, skeletal muscle, or 
even plasma could be important sites of metabolism. Most 
drug metabolism in a given cell occurs in the endoplasmic 
reticulum or cytosol, mitochondria, nuclear envelope and 
plasma membrane. Drug metabolisms are catalyzed by 
enzymes. The most important group of drug metabolizing 
enzymes is the Cytochrome P450 (monooxygenase system). 
Hydrolytic enzymes include a number of non-specific 
esterases and amidases (located in the endoplasmic reticulum 
of human liver, intestine and other tissues). The microsomal 
epoxide hydrolase considered a detoxification enzyme is 
present in the endoplasmic reticulum of essentially all tissues. 
It hydrolyzes highly reactive arene oxides (generated from 
CYP450 oxidation reactions) to inactive, water-soluble trans-
dihydrodiol metabolites. The most important of conjugation 
enzymes are uridine diphosphate glucuronosyltransferases 
(‘UGTs’, microsomal enzymes), catalyzing the transfer of 
glucuronic acid to aromatic and aliphatic compounds. Other 
important enzymes involved conjugation reactions are 
sulphotransferases and N-acetyltransferases. Drug metabolism 
is currently being integrated into drug design and lead 
optimization strategies in order to reduce the cost and time 
taken to develop active compounds that might ultimately not 
be clinically successful due to hidden pharmacokinetic or 
toxicological defects [25].

In silico metabolism screening
One of the major fields within pharmaceutical 

bioinformatics is the in silico metabolism prediction of drug 
candidates [26]. It involves (i) predicting the occurrence of an 
interaction between a compound and an enzyme, (ii) 
predicting the location in the compound that takes part in the 
interaction (the site of metabolism, SOM), (iii) predicting the 
outcome from the interaction (the resulting metabolite 
product). In metabolic prediction, scientists would like to 
know (a) all reasonable phase I and phase II metabolites (b) 
probability of formation under different biological conditions 
(c) probability of formation based on molecular factors and a 
filter against improbable metabolites (d) reactive/adduct-
forming metabolites and itemize the metabolites. The 
challenges facing reliable drug metabolism prediction include 
(i) inter-individual factors (remain invariable for a given 
organism) namely animal species, genetic factors, gender, (ii) 
intra-individual factors (vary for a given organism) namely 
age, biological rhythms, disease, stress, pregnancy, nutrition, influence 
of inducers and inhibitors, (iii) selectivity characteristics of 
metabolic processes for example one type of selectivity at the 
receptor level (quantitatively or qualitatively different responses 
elicited by various drug substances while two different types 
of selectivity in drug metabolism (substrate selectivity and 
product selectivity). Substrate selectivity is the differential 
metabolism of distinct substrates under identical conditions 
whereas product selectivity is the differential formation of 
distinct metabolites from a single substrate under identical 
conditions. Both types of selectivity can be grouped into 
subtypes depending whether substrates (or products) are 
non-isomeric (analogs, homologs or congeners), regioisomeric 

(positional isomers), or stereo isomeric (diastereomers or 
enantiomers). Both substrate and product selectivity are very 
vital in order to predict biotransformation.

In Silico systems to predict metabolism
A wide range of computational methods and integrated 

approaches are used for the prediction of drug metabolism. 
Molecular modeling and data modeling are in silico tools 
available for predicting drug metabolism. Molecular modeling 
[27] requires having knowledge about the three-dimensional 
(3D) structure of the protein. Data modeling is useful for 
information built from only known substrates or inhibitors 
when information on the three-dimensional (3D) structure of 
the protein is not available. Based on this, computational 
methods are generally classified in two categories: ligand-
based approaches [28], which use the information of the 
substrate (ligand); and (ii) structure-based approaches [29,30], 
which use the information of the enzyme–substrate complex. 
Furthermore, two types of algorithms namely specific (local 
systems) and comprehensive (global systems) can be used to 
predict drug metabolism.

(A) Specific (local) systems: apply to simple biological 
systems (single metabolic enzymes or single metabolic 
reactions) and are usually restricted to rather narrow chemical 
series. Such systems include (i) quantitative structure–
metabolism relationships (QSMRs) based on structural and 
physicochemical properties. It deals with affinities, relative 
rates etc. The relationships could be linear, multilinear, 
multivariate etc [31], (ii) quantum mechanical calculations 
revealing correlations between rates of metabolic oxidation 
and energy barrier in cleavage of the target C−H bond. It 
deals with regioselectivity, mechanisms, relative rates etc [32], 
(iii) three-dimensional QSMRs (3D-QSMRs) methods yielding 
a partial view of the binding/catalytic site of a given enzyme 
as derived from the 3D molecular fields of a series of substrates 
or inhibitors. It deals with substrate behavior, relative rates, 
inhibitor behavior etc. The 3D-QSARs has amongst other 
methods, two important ones such as CoMFA (comparative 
molecular field analysis) and GRID/GOLPE etc. (iv) molecular 
modeling and docking

(B) Comprehensive (global) methods: apply to versatile 
biological systems (enzymes, reactions and/or series of compounds 
with broad chemical diversities. Such systems include: (i) 
Databases (MDL metabolite database, biotransformations etc). 
The databases deal with the nature of metabolites, reactive/
adduct-forming metabolites etc. (ii) Expert systems and their 
databases (META, MetabolExpert, METEOR). They deal with 
the nature of major and minor metabolites, metabolic lists, 
reactive/adduct-forming metabolites, relative importance of 
these metabolites depending on biological factors etc. 
METEOR is a computer system which uses a knowledge base 
of structure–metabolism rules (biotransformations) to predict 
the metabolic fate of a query chemical structure. The reasoning 
model built into METEOR allows the system to evaluate the 
likelihood of a biotransformation taking place. The scope and 
limitation of computational methods in predicting drug 
metabolism is presented in table 3.



Madridge Journal of Bioinformatics and Systems Biology

23Volume 1 • Issue 1 • 1000104Madridge J Bioinform Syst Biol.
ISSN: 2641-8835

Table 3. Scope and Limitations of Computational Methods in Drug 
Metabolism.

Metabolic enzymes Computational 
models

Scope, limitation

Prediction of structure 
and function 

Homology modeling, 
quantum Analysis of 
ligand binding events 
mechanics, molecular 
dynamics and enzyme 
mechanisms. 
simulations etc. 

Investigation of 
unstable reaction
intermediates with very 
short 
lifetimes. 

Sites of metabolism Knowledge-based 
systems, 

Able to predict the likely 
SoMs

data mining, machine 
learning, QSAR models, 
reactivity models, 
ligand docking, 
molecular interaction 
fields, shape-based 
methods etc. 

with adequate accuracy: 

Metabolites (chemical 
structure) 
mining 

Knowledge-based 
systems, 
Data

Can produce large 
number of metabolites 
Main challenge is 
finding ways of ranking 
metabolites accurately

Metabolic rates Quantum mechanics, 
molecular 
dynamics simulations, 
QSAR models 
chemical space 
QSAR-like

Prediction generally not 
possible. Only within 
extremely narrow

Interactions of drugs 
with targets related to 

QSAR models Prediction of ligand 
affinity and inhibitory 
activity where adequate 
training data is 
available. Prediction of 
mechanism-based 
inhibitors remains 
highly challenging. 

Free energy calculations 
Various ligand- and 
Interactions of drugs 
Prediction of ligand 
affinity with targets 
related to Accurate 
prediction of structure-
based approaches 
binding affinities without 
need for extensive 
training data. 
Computationally 
expensive and labour-
intense. 

Target prediction 
methods have
become abundantly 
available but high false 
positive rates 
remain(accurate 
ranking) a limiting 
factor. Prediction of 
training data.

Metabolic enzymes Computational 
models 

Scope, limitation

Biological activity and 
toxicological effects 

Rule-based approaches 
are able
to detect most 
toxicophores but 
prediction of time-
dependent inhibitors 
remains challenging.

Metabolite identification 
(MetID) 

Various metabolite 
generation and 
spectra analysis 
approaches. 

Major advances recently 
driven by increasingly 
available data, data 
exchange and new 
algorithms.

Outcome of prediction of drug metabolism
The successful prediction of drug metabolism depends 

on data and information gathered from various methods and 
resources. Such methods (models) and resources include:

Experimental data: Computational models are often (but 
not exclusively) based on experimental data, and the amount 

and quality of the available data will determine their coverage 
and performance. Experimental data such as bioactivities can 
be modeled using QSAR techniques by applying linear regression 
techniques to fit experimental data. Biotransformation data 
can be used to derive models for predicting both the sites 
and products of metabolism in an automated fashion. For 
instance, MetaPrint2D [33] generates simple statistical models 
for site of metabolism (SoM) prediction from biotransformation 
databases. A modified form (MetaPrint2D-React of the 
software, identifies and encodes the type of metabolic 
reaction observed for specific atom environments and 
generates the chemical structures of likely metabolites by 
applying reaction rules to predicted site of metabolisms 
(SoMs).

Expert knowledge: Scientists using empirical knowledge 
accumulated from drug metabolism research data developed 
reasoning models and have applied them to metabolite 
structure prediction [34]. Knowledge-based approaches such 
as Meteor [35] predict the sites and products of metabolism 
by scrutinizing a molecule of interest for the presence of 
target fragments. Their key advantage is the provision of the 
rational basis underlying a prediction (for example literature 
references and brief descriptions).

Physicochemical properties: Expert systems and many other 
predictors make extensive use of computed physicochemical 
properties such as logarithm partition coefficient (octanol/
water) or logarithm distribution coefficient (log D) and the 
knowledge that highly water-soluble compounds are likely to 
be excreted without undergoing metabolism as a means of 
metabolite ranking and filtering.

Target Structure: Consist of ligand-based and structure-
based methods. Ligand-based has significant uncertainty 
about the target structure, specifically the ligand-receptor 
interaction site. Automated ligand docking can be utilized to 
examine if a specific site on a molecule has the potential to 
bind to a specific site in a target protein. It is possible to 
predict SoMs by relating the proximity of ligand atoms in a 
computed docking pose to the catalytic center of the target 
enzyme. This approach provides a structural hypothesis for 
the observed biological response and can correctly predict 
the approximate ligand orientation within the binding pocket 
[36,37]. To identify the SoM, a variety of ligand-based tools 
are used, such as expert systems, data mining approaches, 
quantitative structure activity relationships (QSAR), machine-
learning methods, pharmacophore-based algorithms, shape-
focused techniques, molecular interaction fields (MIFs), and 
reactivity-focused techniques. Structure-based methods 
consider structural properties of the target; these structural 
models cover only a fraction of the enzymes’ conformational 
space relevant to the binding of small molecules [38].

Target Flexibility: The plasticity and size of drug-metabolizing 
enzymes binding sites depend on their functions and provide 
a flexible and adaptable system for processing a wide range 
of substrates. Molecular dynamics (MD) simulations/quantum 
chemical methods are the most powerful theoretical approaches 
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for analyzing and predicting the interactions of protein-ligand 
pairs. Such simulation methods also provide knowledge 
about the structure, function, specificity and mechanisms of 
metabolic enzymes [39,40].

Reactivity: Quantum mechanical (QM) methods allow 
reactivity study. Reactivity is the major determinant of drug 
metabolism [41], QM systems generally consider only the 
most proximate protein environment (directly involved in a 
chemical reaction) but ignore effects originating from the 
more distant protein environment [42]. Molecular dynamics 
simulations and quantum mechanical methods have 
complementary properties and the combination has become 
a key technology for investigating enzyme reactions [43,44]. 
The calculation of molecular flexibility and/or reactivity, depict 
one specific protein-ligand interactions or enzyme mechanism 
only.

Metabolic networks - Systems biology: Comprehensive 
models (simulators) of drug metabolism require the ability to 
correctly predict various events and properties of the system 
to allow the estimation of biological effects. It would be 
accomplished by accurate knowledge and prediction of (a) 
concentrations and distribution of the drug, (b) metabolic 
liabilities (SoMs), (c) chemical structure of metabolites, (d) 
interactions with pharmacologically and toxicologically 
relevant biomolecules, (e) reaction rates and (f) tissue 
concentration and localization of enzymes and cofactors. 
Target prediction tools allow the identification of likely ligand-
protein interactions and possibly extrapolation to the 
contribution of these interactions to prediction of phenotypic 
effects using QSAR techniques. QSAR models for predicting 
drug metabolism have undergone significant advances. The 
QSAR models can be divided into four main steps: (i) 
determination or collection of the biological property of 
interest (metabolism parameters), (ii) molecular descriptor 
generation and variable selection to extract desirable 
independent variables, (iii) model generation and validation 
with training and test sets using linear or nonlinear statistical 
methods, and (iv) prediction of the metabolism of new 
compounds using an external validation set. Several types of 
QSAR approaches have been developed with a wide variety of 
descriptors, such as: physicochemical (1D), topological (2D), 
and the 3D structure (3D) [45,46]. Table 4 shows the computer 
software utilized in predicting drug metabolism.

Table 4. Computer Software Used in Drug Metabolism Prediction 
Computer 
software 

Core 
components 

Types Coverage Description (function)

MEXAlert125 rules LB, 2D phase II Quick screening tool to 
identify unstable 
metabolites.

QikProp126 rules LB, 2D ~20 
phase 

Fast SMARTS pattern 
matcher for predicting SoMs 
for phase I reactions.

Metaprint2D48 atom 
mapping; 
statistical 
model 

LB, 2D phase I+II Derives likelihoods of 
metabolic transformation for 
atoms with a defined atom 
environment by mining large 
biotransformation 
databases.

FAME91 random 
forest 

LB, 2D phase I+II predicts phase I and II 
metabolism in different 
species. For drugs, drug like 
molecules, endogenous 
metabolites and natural 
products.

Metabol 
Expert134

Knowledge
based system 

LB, 2D phase I+II Contains rules and lists of 
structures that inhibit or 
promote the reaction. Uses 
logP for filtering metabolites 
likely to be directly excreted. 
Predicts pathways in 
animals, plants or through 
photo degradation.

Meta-PC135 Knowledge
based system 

LB, 3D phase I+II Uses a large 
biotransformations 
dictionary. Analyzes 
metabolite stabilityusing 
quantum mechanical 
calculations and predicts 
pathways in mammals, 
through aerobic and 
anaerobic biodegradation.

Meteor 
Nexus21 

Knowledge
based system 

LB, 2D phase I+II Employs a collection of 
knowledge-based 
biotransformation rules 
defined using a dedicated 
structure representation 
language

MetaDrug136 Knowledge
based system 

LB, 2D phase I+II Aid the decision-making 
process. Considers 
calculated logP values for 
predictions. Generates 
metabolites from a 
dictionary of rules. Predicted 
metabolites are rank-
ordered.

TIMES137 Knowledge
based system 

LB, 2D phase I+II  library and a heuristic 
algorithm to generate 
metabolic maps. Dedicated 
models for skin metabolism, 
in vitro and in vivo 
metabolism.

SyGMa22 Knowledge
based system 

LB, 2D phase I+II Predicts structures of likely 
metabolites based on rules 
derived from statistical 
analysis of several thousand 
biotransformations. Assigns 
probability scores to each 
metabolite 

EAWAG-BBD 
Pathway 
Prediction 
System138

Knowledge 
based system 

LB, 2D phase I+II Rule-based system 
specialized in microbial 
catabolic metabolism of 
environmental pollutants. 
Classification of metabolites 
with Respect to their 
likelihood. 

J Chem 
Metabolizer 
139 

Knowledge
based system 

LB, 2D phase I+II Enumerates all possible 
metabolites of a given 
compound. Prognosis on 
metabolic pathways, major 
metabolites and metabolic 
stability. Species-specific 
predictions of metabolites.

Metaprint2D-
React 

atom 
mapping; 
statistical 
model 

LB, 2D phase I+II Generates structures of likely 
metabolites based on the 
MetaPrint2D data mining 
approach.

Conclusion
Experimental and integrated computational approaches 

have been used to investigate drug metabolism. Experimental 
approaches used to investigate drug metabolism come with 
substantial demands in technical resources and human 
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expertise. Integrated computational approaches combine a 
variety of data sources, models, and algorithms in order to 
highlight applicability, information content and significance 
and prediction success rates with the major objective of 
rendering a complete picture of physiological processes.

Currently, research predicting drug metabolism has been 
limited to a number of technologies, namely rule-based tools 
and algorithms for sites of metabolism, electronic models, 
homology models as well as pharmacophores and QSARs 
models.

Due to the importance of human expertise, various 
disciplines such as chemistry (analytical, medicinal, physical, 
organic synthetic), biology (biochemistry, enzymology, 
epigenetics, genetic etc.), pharmacology (clinical, molecular, 
pharmacokinetic, toxicology, therapeutics etc.), and computational 
components (software development, quantum chemistry, 
simulations, statistics, machine learning etc) are involved in 
drug metabolism prediction. Finally, the study has revealed 
the relevance of pharmaceutical bioinformatics in predicting 
and understanding drug metabolism (biotransformation) 
including information regarding the structure–metabolism 
relationships.
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