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Abstract
Physicist and astronomer Fred Hoyle has repeatedly criticized Neo-Darwinism as a flawed 

theory because of mathematical and statistical problems. His comments have been used by 
creationists and other opponents of the theory, even though he himself did not support their 
views. In this paper Hoyle’s critique of one aspect of Neo-Darwinism is analyzed to see what 
merits it may have. The conclusion is that while Hoyle’s mathematics is impeccable, and thus 
his critique based on them has merit, he did not carry his own reasoning far enough and 
specifically failed to consider the possibility of large variations in selective value. This may have 
been due to his belief that such variations would be extremely unlikely, due to an assumption 
that such variations would be governed by a normal distribution. However, if a heavy-tailed 
distribution is involved, such variations become feasible. The net result is that evolution in its 
early stages may have involved large jumps, which, though infrequent, would move it along. 

Keywords: Heavy-Tails; Selection; Deleterious Mutation; Rare Events; Cambrian Explosion.

Introduction
Physicist and astronomer Sir Fred Hoyle (1915-2001) was a longtime and often 

vehement critic of Neo-Darwinism. Since he was a reputable scientist who made many 
valuable contributions [1], his criticisms cannot be dismissed out of hand. Equally important, 
they are often used as ammunition by opponents of evolution, such as creationists, [1] who 
actually had N. Chandra Wickramasinghe, a colleague of Fred Hoyle, testify in a famous 
“Balanced Treatment” court case in Arkansas in the 1980s [2]. In this paper I will examine 
Hoyle’s argument about the effective impossibility of evolution in asexual systems 
according to the paradigm envisioned by Neo-Darwinism. His critique of evolution in 
sexual systems is more complex and requires a much lengthier analysis that is beyond the 
scope of this paper. The goal of this evaluation is to determine what is of value in Hoyle’s 
critique and what insights, if any, it can provide for the modern understanding of evolution.

We begin with Hoyle’s assumptions. He starts at the beginning, with a system of 
asexually reproducing organisms of the simplest kind, which by all accounts would have 
been the first to arise and the basis for all subsequent organisms. As such, he makes the 
following assumptions:

1.	 The individual organisms are assumed to be of the same species
2.	 They differ in their genetic makeup, which is reflected in their phenotype and 

thus in their interaction with the environment.
3.	 All individuals are in the same environment.
4.	 Each individual acts independently and in competition with all others

https://doi.org/10.18689/mjbsb-1000103
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5.	 There is no sexual, chemical, or other means of 
communication among individuals.

6.	 Each individual and its offspring function as a separate 
species for the purposes of competition and dominance

Assumptions 4-6, at least, clearly do not apply today, but 
are presumed to be a reasonable description of the situation at 
the dawn of life.

Darwinian evolution is often represented as an almost 
inevitable outcome of certain natural processes, working “like 
logic” in its simplicity [3]: variants arise randomly which are 
better than existing organisms in some respect; they are 
selected for, their improved genes spread through the 
population, and eventually enough beneficial changes occur 
that new species and higher taxa arise. Hoyle argues that it 
works “like logic” only under highly simplified (and highly 
unrealistic) assumptions. He builds his case with a 
mathematical construction of the process, and indeed the 
mathematics quickly do become complex and often quite 
counterintuitive. Essential to his analysis is an accurate view of 
natural selection, which is frequently misunderstood and 
misrepresented. The simple (and uncontroversial) fact is that 
the majority of mutations are deleterious, not beneficial. 
Natural selection does not choose the “best” in an absolute 
sense; it can only choose the best among an array of 
possibilities. Therefore even starting from a population with 
no defects, a number of defects must arise in order to give 
natural selection something on which to “bite”. Since 
deleterious mutations occur in every generation, but beneficial 
mutations are few and far between, Hoyle’s analysis of the 
problem starts with the fact of deleterious mutations and 
analyzes their effect on fitness and survival.

First case: no mutations
The simple case of asexual (single parent-to-child) 

reproduction is the one envisioned by Darwin and which is 
described in virtually all biology texts. The model employed is 
that of a population in which variation exists, and natural 
selection acts to stabilize the fitness level in the absence of 
mutations. The mathematics is likewise simple and quite 
attractive, as formalized by Hoyle [4] Assume that individuals 
in a population can have one of two traits, say A and a, and 
that A endows its possessors with an advantage s over those 
possessing a. This advantage s is typically assumed to be 
rather small, in accordance with the Darwinian and Neo-
Darwinian theories. Let the initial population have a fraction x 
possessing trait A, and 1-x possessing trait a, and assume that 
offspring are produced in the ratio 1+s: 1 by the A and a 
individuals, respectively. Let pa be the number of A’s and pb the 
number of a’s. Then after one generation, we will have pa+spa 
individuals with A, and pb individuals with a, assuming (without 
loss of generality) that the population of the latter is constant 
from generation to generation. We are interested in how the 
population of A and a individuals will change over time. 

For concreteness sake, consider the following example. 
Assume that both A and a start with 50 individuals each in the 
population of 100. Let s = 0.1 (unrealistically high, but useful 
for this illustration). Then in the next generation, there will be 

50(1+0.1) A’s, and 50 a’s. We can continue with further 
generations, repeating the calculation, and then calculate the 
percentage of A and a as generations (time) continue. The 
result is shown in Figure 1. Clearly, the selective advantage of 
A will cause its percentage to approach 100%, while the 
percentage of a’s in the total population will dwindle down to 
near zero. In this case, the population of A’s increases 
exponentially, as shown in Figure 1, though of course the 
percentage of A’s in the population is limited to 100%. 

To see this, note that after one generation, the change in 
A’s is given by

∆pa=(pa+spa)-pa=spa

As a rate of change, this becomes
 ∆pa--------  =spa  ∆t

In the limit as t∆ approaches 0, we have
 dpa--------  =spa dt

The solution to this equation may be found in any elementary 
calculus book as

pa=pa(0)est

Where pa(0) is the number of A’s at time 0. 
In more symbolic mathematical terms, a straightforward 

calculation shows that in the first generation, the fraction x of 

A, call it x1, would increase to 
x0(1+s)-----------------------------x0(1+s) + (1+x0) 

over the fraction 

at the beginning x0. Assuming that the number of a’s remains 
constant, then the change in x, ∆x, may be readily calculated 
as

	 x0(1+s)	 sx0(1-x0)∆x = --------------------------------- - x0 = -------------------	 x0(1+s) + (1+x0)	 1+sx0

Thus the rate of increase of individuals possessing A will be 
∆x	 sx0(1-x0)----- ≈ ---------------
∆t	 1+sx0

or in differential equation form,
dx	 sx0(1-x)----- = --------------- ≈ sx (1-x)dt	 1+sx

for s << 1 and assuming that change is slow and overlapping 
generations allow t to be approximated as a continuous 
variable. The solution of this equation can be readily found by 
using standard formulae or a computer algebra program:
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Figure 1. Simplified model of population changes in asexual case. 
(a) Population size. (b) Percentage of population with A (blue) and a (red).

	 1x(t) = -----------
                1-Cest

where C can be evaluated using the initial condition x=x(0) at 
t=0. This equation exhibits the behavior of A shown in Figure 
1, above. 

Note that this simple case illustrates the action of natural 
selection by itself, in the absence of deleterious changes or 
mutations; no assumption was made about the origin of the 
two genes A and a. They could have been part of the 
population’s gene pool, or A could have arisen as a mutation 
of a. 

Second (more realistic) case: errors (deleterious mutations)
Next we turn to a more realistic case which includes errors 

due to mistakes in the copying process or deleterious 
mutations. Ignoring for the time being the problems posed 
by many-to-one and one-to-many gene mappings, consider 
only the problem posed by copy errors or deleterious 
mutations. This is still an oversimplified case, but will serve to 
make the point. For a typical mammalian genotype, 
sophisticated error correction schemes reduce the average 
error rate to something on the order of 3 x 10-9. per base pair.2 
With about 108 base pairs actively coding, this means that 
each offspring, on average, has a chance of being miscopied 
on the order of 3 x 10-9 x 108 = 0.3. We shall refer to this 
average number of deleterious mutations per offspring as l. 
Such added realism causes matters to become far more 
complex, and much less intuitively obvious. 

To see how the scheme now works out, observe that the 
number of deleterious mutations per generation will be 
approximately Poisson distributed, so that the probability of k 
new mutations in a particular offspring is given by lke-l

-----------k! .3 
This distribution falls off quite rapidly for values of l less than 
0.5, so we shall ignore all but the first two terms, k=0 and k=1, 
i.e., 0 or 1 new mutations, with probabilities given by 1-l and 
l, respectively, approximated to first order. We can safely 
ignore the remote possibility of mutations which correct 
existing defects, and as a result we are only need to consider 
the cases where parents can produce offspring with the same 
number or one more mutation than they themselves have. We 

shall further assume that each deleterious mutation reduces 
the viability by the same amount, or as it is usually phrased, 
each has the same adverse selection factor, call it s, assumed 
negative. This means that for an individual with r mutations, 
we would expect the number of offspring produced to be 
reduced by (i.e., multiplied by) a factor of (1-|s|)r as compared 
to an individual with no mutations. Our goal is to determine 
the average number of mutations per individual in the 
population after many generations, and the corresponding 
average reduction in fitness, when a steady-state condition 
has been realized, assuming that all individuals of the initial or 
zeroth generation have no mutations. While this is obviously 
unrealistic, we do not yet know the correct answer and must 
assume something to start the calculation iterations. The 
value assumed for the initial generation is of no importance 
as the equations will converge to the steady state value. We 
shall further assume, without loss of generality, that the 
population size is constant, as this will simplify our calculations. 

Unfortunately, to solve the problem there is no alternative 
to brute force enumeration and summation of all possibilities, 
i.e., of all offspring (k=0 or 1) from all possible parents (r=0, 1, 
2,). Let yr (t) be the fraction of the population with r defects at 
time t. Now, an individual with r defects can produce offspring 
proportional to its fitness, given above as (1-|s|)r, with (1-|s|)r 

(1-l) having r defects and (1-|s|)r l having r+1 defects. 
However, we are assuming a stable population normalized to 
1,4 so therefore the total number of offspring must sum to 1. 
This means that at any time t there will be a “normalizing” 
condition

a(t) Σ
r
  (1-|s|)r yr=1, r=0,1,2...

where a(t)(1-|s|)r represents the total number of offspring 
produced by a parent with r defects, some of which will have 
the same number (r) of defects as the parents, and some of 
which will have r+1 defects.

We may now set up recursion relations to determine the 
quantities of interest. At the first generation, the number of 
offspring with 0 defects will be the number produced by 
parents with 0 defects times the probability of zero additional 
defects:

y0(1)={a(0)(1-l)y0(0)}
Similarly, the number of offspring with one defect will be 

the number of parents with 1 defect times the probability of 
zero additional defects, plus the number of parents with 0 
defects times the probability of 1 additional defect:

yi(1)={a(0)(1-|s|)(1-l)y1(0)+a(0)ly0(0)}
In general, the number of offspring with r defects will be 

the number of parents with r defects times the probability of 
zero additional defects, plus the number of parents with r-1  
defects times the probability of 1 additional defect:

yi(1)={a(0)(1-|s|)r(1-l)yr(0)+a(0)(1-|s|)r-1lyr-1(0)}

where the yi(1)  terms are subject to the normalizing condition 
(9) above. These recursion equations can be converted to 
differential form by noting that

		  dyr(t)yr (t+1) ≈ yr (t) + ------------   r = 0,1,2... 		     dt
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So the above equations become, in differential form,
 dy0-------- = [a(t)(1-l) -1] y0  dt
 dy1-------- = a(t)ly0+[a(t)(1-l)(1-|s|)-1] y1  dt
 dyr-------- = a(t)(1-|s|)r-1 yr-1+[a(t)(1-l)(1-|s|)r-1] yr  dt

subject to normalizing condition
	 1a(t) = ----------------------	 ∞

Σ
r =0

 (1-|s|)r yr

and boundary condition y0(0)=1; yr(0)=0, r=1,2,...
The steady-state solution to equations (14) is given to a 

good approximation by

	 1	 lyr = ----- [ ----------------- ]r 

e 
l[-  --------------   ](1-l)|s|

	 r!	 (1-l)|s|

This, of course, is just the Poisson distribution with parameter 
(i.e. mean and variance)

l---------------(1-l)|s|

which is the average number of defects per member of the 
population, in the steady state, attained after approximately  
4/|s| generations. The average individual, therefore, has fitness 
lowered by 

(1-|s|) 
l--------------(1-l)|s| ≈ e

l- -------1-l  ≈ e-l

to first order in l. To illustrate these equations and the 
evolution of a population which starts initially with zero 
defects, we consider the concrete case of l = 0.3, |s| = 0.02. 
This gives an expected number of defects of approximately 
18, and a reduction in fitness of approximately 0.65. The 
number of defects as a function of generation is shown in 
Figure 2. The evolution of the individual yr terms, that is, the 
number of individuals possessing r defects, is shown in Figure 
3 for several cases. Note that the population of individuals 
with small numbers of defects rises and then falls off, with this 
behavior continuing through the r values, eventually 
stabilizing around the expected value. 
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Figure 2. Average number of defects per individual in typical 
population with parameters discussed in section 3.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

Fr
ac
tio
n 
w
ith
 d
ef
ec
ts

Generation

0 defects
1 defect
3 defects
6 defects
18 defects

Figure 3. Evolution of defects within a population, showing eventual 
steady-state level.

As an illustration, consider Figure 4, which shows the 
fraction of the population with r defects, as a function of r, in 
the steady-state condition. Natural selection is able to hold 
this distribution, i.e., prevent it from drifting further to the 
right. Natural selection can hold this distribution because of 
the higher survival rate of those with fewer mutations, which 
are accordingly selected for. Also shown for comparison 
purposes is the distribution after only 25 generations.
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Figure 4. Distribution of defects in population at 25 generations 
and at 250 generations (steady state), illustrating natural selection’s 
ability to hold a certain defect level against further degeneration.

There are two interesting observations to be made about 
this case. First, note just how far we are from any sort of 
intuitively obvious behavior of the type envisioned by Darwin 
and many contemporary proponents of Neo-Darwinism; and 
second, observe that the mathematics has become dense and 
in some ways counter-intuitive, which implies that there is no 
substitute for rigorous analysis.

Third case: introduction of beneficial mutations
But what about beneficial mutations? Can they not still 

propagate through the population as the simple model 
presumes, so that the deleterious mutations are ultimately 
irrelevant? Hoyle claims that this will not happen because 
such beneficial mutations are completely swamped by the 
deleterious mutations [4]: 

When favourable mutations of the same [selection value 
|s|] are also considered to occur, but at a rate much less than 
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l, the effect is only to produce slight perturbations of the 
Poisson distribution [equation (16) above], perturbations that 
are soon stamped out under the continuing pressure of the 
bad mutations. Favourable mutations become swallowed in 
the flood of bad mutations (p. 20).

We shall see in Section 6 to what extent this conclusion is 
warranted. But first let us illustrate with a simple but 
representative case. Assume that a beneficial mutation occurs 
in the population discussed above, at generation 150, in an 
organism with 14 defects (below the average of 17). Further 
assume that this mutation increases fitness by a given amount, 
say four times the (absolute) value of the deleterious 
mutations; that is, this beneficial mutation is as large in the 
increased fitness direction as four deleterious mutations in 
the decreased fitness direction. As with all such cases, the 
exact effect of this, of course, will depend on the total 
population size (with a larger effect observed for a smaller 
population), but the results are similar. Here we have assumed 
a small total population of 50, so that a single organism 
enjoys the beneficial mutation and starts its own 
subpopulation, competing for resources with the rest of the 
non-mutated organisms. So what happens? At first the 
subpopulation enjoys rapid growth; but then, because it in 
effect starts the process of fighting the deleterious mutations 
afresh, they begin to grow from the starting point of 14, in 
effect swamping the advantages of the beneficial mutation. 
The effect is illustrated in Figure 5, which shows the original 
and mutated populations for this case. Note that up until the 
time of the assumed beneficial mutation, the population was 
stabilizing as natural selection took hold and was able to keep 
the number of deleterious mutations in check by differential 
selection of those individuals with lower numbers of defects. 
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Figure 5. Effect of beneficial mutation on a population at 
generation 150.

If the value of the beneficial mutation is increased further, 
from 4 to 10, the effect is similar, but takes longer to die out, 
as shown in Figure 6. Figure 7 shows the distribution of 
defects in the new mutated population, and illustrates the 
very inconvenient fact that whenever a single-parent-to-
offspring population is forced to go through a single organism 
bottleneck (a new population arising from a single individual), 
as in this case, the effect is always to cause such an increase 

in the average number of defects, because of the need for 
there to be a distribution of defects among individuals on 
which natural selection can act, and such a distribution can 
only arise when the offspring of the progenitor accumulate 
more than it had (see Figure 8). 
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Figure 6. Effect of larger beneficial mutation, raised from 4 to 10 
times the effect of a deleterious mutation
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Figure 7. Distribution of defects in original and mutated population 
after 250 generations, when beneficial mutation arises at generation 

150. Note the higher number of defects in the population arising 
from the progenitor with the beneficial mutation, due to the 
bottleneck effect. The lower height of the original population 
distribution reflects the size of the population at that point; 

eventually it will recover to its earlier height shown in Figure 4.

Figure 8. The “bottleneck” effect in single parent-to-offspring 
systems. Each time a new population arises from a single 

progenitor, the average number of defects (deleterious mutations) 
will increase by a fixed number n due to the inability of natural 

selection to stabilize the population until there is a distribution of 
individuals with different numbers of defects. 
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This result is again very counterintuitive. After all, if natural 
selection is selecting the most fit, why aren’t the organisms 
with the beneficial mutation selected for? The answer is that 
they are, but one must consider the whole picture. In cases 
such as this, where a mutated line arises, it is best to think of 
situation as if the lines were separate species—which for all 
practical purposes, they are, since they do not mate and do 
not share genes. If there are two similar but separate species 
competing for the same resources, natural selection will work 
on them individually as well as together. That is, natural 
selection will select those individuals from species A that are 
most fit, and those from species B that are most fit. For each 
species, this will occur based on characteristics that they 
exhibit, which here are related to the number of defects each 
organism has (they are assumed to be identical in other 
respects). So each species must accumulate organisms with a 
range of defects, as discussed above; only then can natural 
selection begin its work. This will happen separately for the 
two species. As it occurs, natural selection will work on the 
overall picture—that is, the organisms from both species will 
be competing. If the average fitness level of one species is 
higher than the other after both accumulate enough of a 
range of defects for natural selection to operate, that species 
will gradually come to dominate. In the case discussed in the 
foregoing paragraphs, the two lines of the same organism 
(with and without beneficial mutation) function as separate 
species. That is why the organisms with the beneficial mutation 
do not necessarily take over the population.

Can beneficial mutations ever have an effect?
In actuality the mathematics do not absolutely prohibit 

improvement by beneficial mutation, but they do constrain it 
significantly, as the foregoing examples suggest. Only if a 
beneficial mutation is so large that its early rapid growth can 
cause the original population to decline to 0 (less than 1 
organism) will it take over. This case Hoyle did not consider. 
Then the mutated organisms are the only ones left. This can be 
seen in the previous case by increasing the selective value of 
the beneficial mutation to 15, as shown in Figure 9. Thus if the 
value of the beneficial mutation is sufficiently large, and the 
original (unmutated) population disappears, the problems 
cited above can be overcome to some degree. Curiously, such 
mega-mutations are just what certain evolutionary theories 
have postulated, notably those of Hugo de Vries (1848-1935) 
[5], William Bateson (1868-1926) [6], and Richard Goldschmidt 
(1878-1958) [7] but they were not widely accepted because of 
the mathematical arguments of Sir Ronald Fisher (1890-1962) 
[8, 9], namely that the assumed mechanisms of change—
random genetic modifications—are always small, though this is 
not a constraint imposed by physics, chemistry, or information 
theory. So the bottleneck problem severely constrains the 
possibilities of improvement through the mechanism of 
beneficial mutations, as the defects will accumulate each time, 
and soon become overpowering unless the improvement is 
very large compared to the negative effects of the accumulating 
defects or it occurs to a particular organism with few or no 
defects (or both). 
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Figure 9. Effect of a mega-mutation of selective value 15 times the 
normal, causing original population to die out.

The number of beneficial mutations needed for a new 
species is likely to be on the order of 500. If 17 defects accumulate 
with each mutation, the total accumulated defects per individual 
would be on the order of 8,000, and obviously unsustainable 
number. The “mega-mutation” illustrated here is one way to 
escape from this “death by defect accumulation” problem, by 
effectively counteracting many deleterious mutations (perhaps 
by replacing some mechanism in the organism with a new, 
better one), effectively resetting the defect counter. Alternatively, 
it may take place in an organism which has few defects to start 
with, so that the defect accumulation problem is not so severe. 

Hoyle did not consider this case, and concludes that the 
problem is insoluable without addition of sexual reproduction, 
which allows sharing of genes [4]:

…the usually supposed logical inevitability of the theory of 
evolution by natural selection [and beneficial mutations] is 
quite incorrect. There is no inevitability, just the reverse. It is 
only when the…asexual model is changed to the sophisticated 
model of sexual reproduction accompanied by crossover that 
the theory can be made to work at all, even [to a] limited 
degree (p. 20)

But as we have seen, this is not the only solution, even 
under the stated assumptions. What we can tentatively 
conclude from this extension of Hoyle’s results are the 
following:

1.	 Significant changes in organisms are more likely in 
smaller populations, since it is there that the large 
mutation has the greatest likelihood of causing the 
original population to die out and thus be replaced.

2.	 If the large beneficial mutation happens to occur to 
one of the organisms with a very low number of 
defects (and there are a few of them, more in larger 
populations), then the mutated organisms has a 
greater chance of taking over and the effect of 
accumulation of defects will be greatly mitigated.

3.	 It shows that Hoyle’s conclusion that progressive 
evolution cannot occur under the stated conditions is 
not correct, though such evolution would require 
mega-changes.
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One could also argue that one or more of the original 
conditions (1)–(6) are incorrect, or that the parameters s 
(selective advantage) and/or l (average number of mutations 
per offspring) are not fixed. We next consider the first of these 
relaxed assumptions.

Heavy tails to the rescue
The foregoing argument, based on Hoyle’s text, assumes 

that selective advantage s is fixed, but reveals that mega-
mutations-those with very large selective advantage—could 
be game changers. If selective advantage s is a random 
variable, large values of it do indeed become possible. But 
based on the usual statistical assumptions such mutations 
would be exceedingly unlikely, so unlikely that they can be 
dismissed as something that would never occur in the entire 
lifetime of the universe. At some level this fact may have been 
at the back of Hoyle’s mind, though he did not discuss the 
question of making s a random variable. To understand why, 
take s to have a normal distribution with mean s and variance 
ss

2, which would be a common and reasonable assumption 
given that selective advantage is the result of many factors 
interacting, none of which seems to be overwhelming; and so 
one can just invoke the Central Limit Theorem (CLT) as 
justification. To get some feel for the degree of change this 
permits, assume that s is normalized to have mean value 1, 
and consider only positive values (beneficial mutations). Let 
variance be given by 1. Then for a normal distribution the 
probability of a beneficial mutation of value 11 (10 standard 
deviations from the mean) is 3.04 x 10-24. If there were a million 
mutations per day, say in some population, the 10-sigma 
event could be expected to occur about once every 3.29 x 1017 
days, corresponding to about 9.01 x 1014 years-roughly 4 
orders of magnitude longer than the age of universe and 5 
orders of magnitude longer than the age of earth. If a mega-
mutation of 15 standard deviations were required, the numbers 
are of course far grimmer: probability of 1.046 x 10-51, which, 
even at 10-12 mutations per day would still require 1.9 x 1036 
years-it just won’t happen, and no theory based on the need 
for a large number of such occurrences can be credible. 

But it could also be the case that the selective advantage 
s is indeed a random variable, though one which does not 
have a finite variance, or has a very large variance, and in 
some ways therefore behaves significantly differently from 
the normal distribution. This would occur if the probability 
density function of s is heavy-tailed, i.e., whose tail values fall 
off as a power of x rather than as e-x2. In such case the CLT fails 
to apply; investigation of the reasons why it fails to apply is 
beyond the scope of this paper but may have to do with a 
special type of correlation among the variables giving rise to 
the selective value as demonstrated [10]. This is especially 
interesting because empirically heavy-tailed distributions can 
masquerade as normal distributions based on what would 
seem to be an adequate sample size [11]. However they can 
lead to large (far from the mean) variations, i.e., values of the 
random variable, which occur with much greater frequency 
than a normal distribution would suggest—Taleb’s “black 
swans” appearing in genetic guise [12]. 

Technically, given a probability distribution function f(x), 
if for large x values, its cumulative distribution function F(x) 
has the property that it’s complementary distribution

1-F(x) ≈ κ1x -b

where κ1>0 and β∈[0,2], then the distribution function is said 
to be heavy-tailed because it falls off very slowly with 
increasing values of x, as shown by Willinger and Paxson [13], 
and Crovella and Bestavros [14]. In turn, this has an important 
consequence. Setting b=2 and differentiating above equation, 

f(x) = 2κ1x -3

Since Var(x) = E(x2)-[E(x)]2 and [E(x)]2 is fixed, it follows that the 
variance is determined by 

That is, the variance is infinite. 
The Pareto distribution—a typical heavy-tailed 

distribution—has the general form 

               k  a
F(x)=1-(-----), a,k>0   x≥k               x
         dF(x)  a
p(x)=----------= akax-a-1
           dx

As a decreases, the “heavy-tail” effect increases. The expected 
value of the distribution is

           akE(X )=---------          a-k
And the variance is given by

   k   2    a(--------) --------  a-1   a-1
For a < 1, the expected value becomes infinite. For a < 2, the 
variance is infinite; for a > 2 the variance is finite but as a 
approaches 2 the variance becomes arbitrarily large. This 
distribution is a type of negative power law distribution, 
similar to the one discussed above. 

However, variance need not be infinite in this case for the 
desired results. Since there are two unknowns in the defining 
equations, a fairly straightforward calculation will yield their 
values for desired mean and variance. In particular, for mean 
and variance = 1 (same as before), the result is k=2-√2, 
a=1+√2 . Computing the probability of something 10 
standard deviations from the mean,

    aka
∫

∞

11-------- dx=0.0008416    xa+1

For 16 standard deviations from the mean, the result is
    aka
∫

∞

16-------- dx=0.0003406    xa+1

The fact that these numbers are far larger than those 
derived on the basis of a normal distribution suggests that 
the selection value is not governed by a normal distribution. 
In fact, these numbers are embarassingly large! It is unlikely 
that such large variations would be as common as these 
figures indicated. However this has the advantage that we can 
set the variance to be much less than 1 and still get “finite” 
values for the desired probabilities. For example, with 
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expected value = 1, variance = 1/100, a=1+√101≈11.05 , 
k=(101-√101)/100≈0.9095. In this case the tail from 11 to 
infinity (probability of s > 11) is 1.09 x 10-12. In similar manner 
the tail from 16 to infinity (probability of s > 16) is 1.73 x 10-14. 
At 1 million mutations per day, these numbers suggest about 
1 megamutation (s > 11) every 2500 years or every 158,000 
years (s > 16). Note that time for megamutations to occur is 
far longer than the time for populations to stabalize (~150 
generations), so these will not in general affect stabilization 
time. Figure 11 shows these two cases of the Pareto 
distribution, with part of a normal distribution for comparison. 
Note that the narrow-variance Pareto distribution is barely 
distinguishable from a delta function—essentially a constant 
value for s. 

But we are actually interested in a slightly different case: 
the selective value of mutations can be assumed to vary 
continuously, with most being negative. The Pareto 
distribution, by itself, does not fit this bill well because it starts 
for x > k. It can be mirrored on the y-axis, of course, and this 
suggests the next step: combine positive x and negative x tails 
with another distribution in the middle to bridge them. This is 
a feasible and desirable construction because the parameters 
of the Pareto and Normal distributions permit joining them so 
that the values of the pdf and its first derivative are equal for 
the two distributions. The final distribution, of course, must 
be renormalized so that its area = 1. 

A fairly straightforward calculation gives the result that

     x2-s2
a=-----------       s2

         √2se-x2/(2s2)     s2/(x2-s2)
k=(--------------------------------)      2√px-x2/s2 (x2-s2)

where x is expressed in units of s, assuming without loss of 
generality that m=0, since the resulting graph can be shifted 
to correspond to any desired value of m. A plot is shown in 
Figure 10, which illustrates a normal distribution center with 
its usual tails and with heavy tails (Pareto distributed) grafted 
at +2s, and s=1. Figure 11 shows the case of Pareto tails 
grafted at +2s, but with s=0.10 and mean shifted to -1 
(average selective value). This case is particularly interesting 
because it shows that “most” mutations would be deleterious 
(99.97%), and that the probability of getting a beneficial 
mutation of relative selective value 15 (x > 16) is 8.3 x 10-8.
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If one were taking samples, it would be difficult to 
distinguish these unless a large number of samples were 
taken. That is, “rare events” would occur, but not often enough 
to make an appearance in data samples. By shifting this 
distribution to be centered at, say, -1, the result (shown in 
Figure 11) can be used to make at least qualitative inferences 
about the hypothesis under discussion (viz. that mutations 
with large selective advantage can resolve Hoyle’s problem). 

Empirically, this would manifest itself as long periods of 
stasis (no beneficial megamutations) during the early period 
of earth’s biological history (Pre-Cambrian and Cambrian), 
interspersed with occasional megamutations that would lead 
to significant organism change over very short periods. This 
could account for aspects of the Cambrian Explosion, when 
radically new developments changed the biological landscape. 
Thus Hoyle’s results may ultimately lead to a different 
conclusion than he envisioned, namely that there is some 
truth in the large-variation theories advanced periodically to 
explain key aspects of evolutionary history, especially 
explosive change.

Results
Heavy-tailed probability distributions provide one way to 

resolve the problems of evolutionary change raised by Hoyle, 
because they make mathematically feasible large mutations 
that overcome the barriers Hoyle has noted. Such mutations, 
being rare, would appear as “jumps” and may be responsible 
for aspects of early history of life, such as the Cambrian 
Explosion. Due to the difficulties of distinguishing normal and 
heavy-tailed distributions using limited data sets, as well as 
the appeal of the Central Limit Theorem when dealing with 
such data, normal distributions are commonly inferred when 
this may not be justified. As a result, their may be a persistent 
bias towards estimates of selective value that are too low.

Conclusions and Future Work
Hoyle’s arguments concerning the problems of evolution 

in primitive systems are mathematically sound as far as they 
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go. However, Hoyle did not consider the possibility of large 
mutations, which can resolve the main problem he discusses 
about the inability of such systems to evolve. He considered 
the selective value of mutations to be a constant. If this 
selective value is regarded as a random variable, the 
probability of large mutations can be estimated. If a normal 
distribution with reasonable parameters is assumed, the 
probability of the large mutations is infinitesimally small. 
However, if the selective value has a heavy-tailed distribution, 
the situation changes dramatically. This suggests that early 
organisms may have been stable for long periods, and then 
made sudden large improvements—a different model than is 
assumed to be operative at later times. This idea is somewhat 
reminiscent of Richard Goldschmidt’s “hopeful monsters” 
theory [7] though based on more rigorous analysis. It is not 
inconceivable that such a paradigm of organism change 
underlies the Cambrian Explosion, at least in part. Future work 
will model megamutation-based changes and attempt to 
apply the results to periods of rapid diversification, as well as 
explanation of issues in the fossil record, such as prolonged 
stasis.
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