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Abstract
The invention of composite solid propellants enabled close packing of fuel and 

oxidizer particles, leading to modern propellants. The superior mechanical properties of 
the polymer matrix allowed more propellant to be placed in a rocket motor pressure 
vessel through case bonding (bonding propellant directly to the vessel case). Propellants 
are often stored for periods of up to 20 to 40 years during which time they can degrade 
under the action of environmental conditions. This may eventually be manifested through 
formation of surface cracks. Degradation over time, or aging, is therefore important. 

Aging is a complex mechanical and chemical process, involving multi-scale, multi-
disciplinary mechanisms, from atomic, molecular scale to micro- and macro-scale 
events. Many of its intimate details are poorly understood, making aging prediction a 
challenge. Our research has shown that a mechanical property, tangent modulus, is a 
key aging indicator. Data base analysis showed a connection with strain rate, ambient 
storage time, gel fraction of the matrix polymer, matrix cross link density, molecular 
weight of the polymer sol, and propellant density may exist. A dimensionless ratio 
containing these parameters was formed to predict propellant failure. Statistical analysis 
showed that HTPB iodine number and normalized absorbance also correlate with 
tangent modulus.

Keywords: Structural capability, propellants, Ambient tangent modulus

Nomenclature
C : Structural capability
ε : Strain, in/in
ε̇ : Strain rate, in/in/min
E : modulus, lb/in2

f : fractional amount
FS : factor of safety
K : knock down factor
L : load, lb
M : molecular weight, grams/mole
ρ : density, lb/in3

S : safety factor
σ : stress, lb/in2

t : ambient storage time, weeks
Subscripts
Gel : polymer gel component
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m : maximum
n : normalized
sol : polymer sol component
t : tangent
x-link : polymer intra chain cross links

Introduction
The need for new propellants is accelerating, prompted 

by the new space age, US-Russian-Chinese arms race, and 
hypersonic flights [1-3]. Nations of the world have announced 
new planetary explorations aimed at reaching deeper and 
further into space [4-7]. This will require high performance 
propellants. As hypersonic missiles begin to emerge, an arms 
race is inevitable and new propulsion technology is needed 
for both offense and defense against this new capability. 
Nations will therefore strive to acquire robust missile defense 
capability [8-12]. Solid propellants will be increasingly 
harnessed for commercial access to earth orbit and beyond. 
In that application, safer and more environmentally friendly 
formulations will be needed whilst at the same time satisfying 
the desire for higher performance [13]. The need for new 
propellants is rising. They must not only be more energetic 
but must also be able to withstand environmental rigors 
during storage for long periods of time.

The current solid composite propellants consist of solid 
fuel and oxidizer particles, usually aluminum and ammonium 
perchlorate, respectively, suspended in a polymeric matrix or 
binder, as shown in Figure 1. To achieve maximum energy 
output, filler particles over a range of sizes are used to achieve 
the highest packing density. The largest particle size used is 
about 250 μm.

Figure 1. Composite solid propellant microstructure

Solid composite propellants release energy at a controlled 
rate, burning only on exposed surfaces. The combustion 
gases that are produced pressurize the rocket motor vessel. 
They vent through a nozzle to generate thrust. Propellant is 
consumed on the regressing solid surface until the entire 
mass is gone. The charge, or grain, combustion gas production 
rate is therefore controlled by the total exposed surface area 
throughout burning. This may or may not be constant 
depending on the needs of the mission. Grain geometry 
determines the burning surface area history. If the grains have 

surface cracks, the combustion process may be disrupted 
when burning ensues on the exposed crack faces [14-16].

Solid composite propellants are the culmination of years 
of formulation development that include earlier types, such as 
nitrocellulose and nitroglycerine double base [17]. 
Nitrocellulose is produced through nitration of cotton. Using 
the process developed to manufacture celluloid, it is 
plasticized with nitroglycerine. The resulting material can be 
cast into three dimensional grains and loaded into rocket 
pressure vessels. Double base propellants have high tensile 
modulus and low elongation, and the grains must be free 
standing. If they are bonded to their rocket motor chamber, 
cracking during fluctuation of ambient temperature is likely. 
HTPB composites have low modulus and high elongation 
over a wide temperature range and can be case bonded 
without risk of fracture. Case bonding raised volumetric 
efficiency, paving the way to modern rocket motor designs 
[18]. These include the large solid boosters that were used on 
the Space Shuttle [19]. As a bonus, HTPB composite 
propellants have higher density than double base with an 
attendant higher energy per unit volume. The mechanical 
properties of the former can, however, change over time 
under environmental aging. Gui-Yang Li and Celina noted 
oxidation of the polymers commonly used as the matrix 
material [20, 21]. The propellant grains become weak over 
time, leading to lower structural integrity. Understanding all 
degradation mechanisms is therefore the key in predicting 
reliability of these class of propellants. 

Solid propellant design and quality control has been an 
empirical trial and error process. In deploying the propellants, 
conservative guidelines are used to compensate for the lack 
of precise understanding of the degradation mechanisms. 
Various propellant formulations and batches have been 
analyzed to get dependable batch-wise material data for 
failure prediction models [22].

Quantifying Structural Integrity
Composite solid propellants are, by virtue of their polymer 

matrix, visco-elastic [23]. Extensive tensile testing is required 
to characterize mechanical properties. In some cases, 
accelerated aging experimental results are used to forecast 
long term degradation at ambient temperature. Propellants 
mechanical properties can be tracked over time by comparison 
to baseline data [24]. Linear approximations are frequently 
used to describe the polymer matrix viscoelastic behavior 
(sometimes non-linear). Time-temperature superposition is 
used to estimate the moduli, strength, and elongation under 
transient loading conditions [25-27]. In this way mechanical 
properties corresponding to conditions not easily measured 
directly, such as ignition pressurization or long-term storage, 
can be readily estimated. Factor of Safety is commonly used 
to compare propellant structural integrity to load:

FS=(CK)/(LS)	(Ref. [28])	 (1)

Structural capacity, C, is the maximum stress or strain, as 
appropriate. Load, L, is the applied force or strain, as 
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appropriate. Knock down factors, K, allow for material 
property variation including material property degradation 
variations due to aging. Typical values are in the 0.75 to 0.80 
range. Amid all these experienced-based correlational factors, 
the last approximation is the linear model of viscoelastic 
behavior and other undefined factors. These are included in 
the safety factor, S, which ranges from 1.25 to 1.50. So, 
Equation 1 used in this way, represents 2 to 3 times safety 
margin. For new formulations or those with less experience, 
higher safety factor values within this range are frequently 
used. 

In this kind of empirical design model, there are many 
uncertainties. To increase confidence in the model the worst-
case load limit is occasionally verified by placing the rocket 
motor through a “temperature conditioning” sequence in a 
temperature-controlled chamber. Set to the lowest storage 
limit temperatures, typically from -20°F to -40°F the propellant 
is allowed to come to thermal equilibrium. The propellant is 
then examined, e.g., by x-ray, to observe any damage the 
grain may have sustained. Full scale tests like these are used 
to cross-check the model. The test is carried out at the 
discretion of the test engineer if the material is new, or the 
experience data base is insufficient.

The factor of safety is a historical model that has been 
used. While it works, it also masks the lack of fundamental 
insight and understanding of how each parameter influences 
one another to reach an outcome. This leads to consistent 
and significant over-design. Knock down and safety factor 
values are system specific and may not be applicable to 
systems outside of the data base and therefore do not apply 
to new designs.

Current Solid Propellant Aging Models
The numerous degradation phenomena governing 

composite solid propellant aging have spawned a multitude 
of predictive models. Given the large role structural strength 
of the propellant plays many models focus on predictions of 
mechanical property changes over time. Periodic sampling of 
propellant samples stored at ambient temperature is the 
most straight forward way to determine how quickly this 
takes place. This of course takes time and is not too practical 
if the goal is predicting the fate of a large population of rocket 
motors in advance. One driving force behind change is 
chemical reactions, i.e., polymer oxidation. That reaction rates 
increase as temperature rises can be used to advantage to 
characterize changes more quickly. Propellant samples are 
therefore commonly stored at one or more (three is common 
to test for linearity) above ambient temperatures and 
periodically tested. The results are frequently analyzed using 
the well-known Arrhenius equation [24,29,30]. Plots of 
mechanical property change rate versus reciprocal absolute 
temperature are extrapolated to predict how quickly changes 
occur at ambient storage conditions. This has the advantage 
of arriving at a result in a smaller period than would be the 
case if only ambient temperature storage and testing were 
performed. Arrhenius modeling of empirically measured 

mechanical properties avoids the more complex problem of 
delving into the chemical kinetic details that underpin the 
changes being observed. The procedure is, however, not 
without pitfalls. It is now known that even in the case of the 
most elementary chemical reactions that the Arrhenius 
equation is not strictly obeyed [31]. Curvature in its 
characteristic reaction rate versus reciprocal temperature 
curves is often observed making extrapolation of acceleration 
data back to ambient risky [32]. Furthermore, propellant 
oxidation may be limited by oxygen diffusion rate through 
the polymer matrix, adding further modeling complication 
[33, 34]. To overcome these limitations a kinetic mechanistic 
model of solid phase polybutadiene oxidation has been 
conceived [35]. Through direct modeling of atomistic changes 
in the polymer matrix it may be possible to predict 
corresponding macro scale mechanical properties, although 
not without additional modeling challenges [36-39].

Structural damage and other changes arising from stress 
and strain imposed on the propellant also can alter mechanical 
behavior over time. This aspect involves the polymer matrix 
and its adhesion to the filler particles (above 80% by weight 
filled is common). Fatigue damage is manifested as internal 
matrix tears and adhesion failure between polymer and filler 
particles, the latter process referred to as dewetting [40]. 
Damage is often quantified using the linear rule developed by 
Miner (an increment of damage is defined as the ratio of the 
time a constant stress is applied to the time needed for it to 
cause fracture. Increments are additive, even if produced at 
different stress levels). Although this simple approach is at 
best an approximation of a more complex process it is still 
commonly used for lack of community agreement on anything 
else [41]. Study of the damage process continues to be an 
area of active research [42-45].

Filled polymers often exhibit non-linear stress-strain 
loading curves with hysteresis. The latter phenomenon is the 
well-known Mullins effect [46-59]. When loaded and then 
reloaded, stress is lower than what was observed in the first 
extension, up to the maximum strain of the prior load, a 
phenomenon called stress softening. Furthermore, the 
polymer does not recover all the strain that was applied but 
takes a “permanent set” in its unloaded state [60-62]. This 
phenomenon can slow the accumulation of damage by 
reducing applied stress during subsequent loading. Damage 
and Mullins effect phenomena are observed in all composite 
propellants that employ polymer matrices. They impact the 
magnitude of stress and hence bear on how prevalent 
cracking and other structural failure, such as propellant to 
case bond release.

We therefore see that composite solid propellant 
degradation and aging is characterized by numerous 
competing phenomena. They have been singularly and 
collectively incorporated into models to forecast when failure 
occurs. Oxidation and hydrolysis, for example, have been 
used as the sole criterion [29]. Length of time needed for 
propellant tensile modulus to move outside of its designer 
prescribed limits under the action of these phenomena was 
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taken to be end of life. Alternately, a 30% decrease in 
maximum elongation has been used as an end-of-life criterion 
[63]. Christiansen modeled aging changes in physical and 
mechanical properties over time as the ratio of the current 
value to its initial value proportional to the logarithm of time 
[64]. Fatigue damage arising during periodic loading lowers 
solid propellant strength. Heller combined this effect with 
aging to conceive a model in which end of life occurs when 
damage degraded strength falls below applied stress [65]. His 
model is posed probabilistically to account for the often-large 
variability in propellant mechanical properties and load 
magnitude typically encountered. Storage, shipping, and 
deployment temperatures during the often-complex logistic 
sequence can vary from one rocket to another. Corresponding 
variation in mechanical stress from thermal contraction and 
expansion therefore occurs. Within and between propellant 
batches mechanical property variation can also be significant. 
All of these sources of variability easily cause damage 
fluctuation between individual rockets in a given population 
to range over orders of magnitude. The algorithm, A Global 
Engineering Model of Damage (AGEMOD), also accounts for 
variability, using a Monte Carlo simulation encompassing 
both mechanical properties and load history [66, 67]. End of 
life is declared when the fraction of simulations in which 
cumulative damage sufficient for propellant cracking becomes 
excessively high. AGEMOD accounts for both chemical aging 
and permanent set using empirical data. Both Heller’s and 
Biggs’ models use Miner’s damage rule.

In summary, we see that solid propellant mechanical 
properties are governed by an array of complex phenomena. 
Robust physics, mechanical, and chemical based models for 
each of them remain elusive. In their absence empirical 
methods are commonly used. Attempts to model their 
interaction to predict propellant aging failure therefore likely 
entails error. We will provide an expanded discussion of these 
models in a separate paper to be published in the future. An 
alternate approach to discrete phenomena modeling may 
offer an alternate path with potential to quickly advance the 
science. Dimensional analysis is one such method. 

Parameter Dimensionless Ratios: A Potential Path to 
a Universal Model

Certain parameters may play an especially strong role in 
composite solid propellant behavior. When they are 
judiciously combined it may be possible to create a single 
model of this entire material class. We selected tangent 
modulus to illustrate this process, owing to its key structural 
integrity role. Tangent modulus is the slope of the stress 
versus strain curve, Figure 2. As shown, it is the ratio of change 
in stress over corresponding change in strain,

Et = (σ2 – σ1)/ (ε2 – ε1)	 (2)

Figure 2. Maximum tangent modulus

Grain stress is directly proportional to modulus under 
application of load. Modulus therefore has direct bearing on 
the onset of grain fracture, playing a central structural integrity 
role. Increasing tangent modulus, over time, of HTPB matrix 
solid composite propellants is observed in a group of four 
formulations, Figure 3 [22, 68-70]. Although all exhibit 
increasing modulus over time, they do not share a common 
intercept.

Figure 3. Composite solid propellant tangent modulus at 25°C 
versus storage time at 25°C

Osbourne Reynolds used a dimensionless system 
parameter ratio to gain insight on material behavior [71]. The 
Reynolds Number, a ratio of inertial to viscous forces, reveals 
when transitions from laminar to turbulent fluid flow occur. 
This approach was used to see if a universal tangent modulus 
relation could be found.

A dimensionless ratio incorporating matrix material 
physical property and loading parameters was constructed. 
Those selected are either observed or suspected of having 
some correlation with tangent modulus. Strain rate, ambient 
storage time, the weight fraction of the matrix polymer that is 
in a gel state, the matrix polymer cross link density, the 
molecular weight of the matrix polymer sol fraction, and solid 
propellant density were selected. Parameters that are 
expected to increase modulus appear in the ratio numerator. 
In accord with the visco-elastic nature of composite solid 
propellant, increases in ε̇ lead to higher modulus. Increases in 
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gel fraction and cross link density signal a greater degree of 
matrix interconnection, also raising modulus. As the molecular 
weight of the matrix sol fraction goes up, the increase in size 
of these free-floating molecular species should inhibit viscos 
flow of the matrix. This too should increase modulus. 
Increasing density is also associated with rising modulus, 
reflecting the higher concentrations of polymer chain cross 
links as oxidation proceeds and the addition of oxygen atoms 
to the chains. Despite this it was placed in the denominator, 
as a means of preserving the dimensionless nature of the 
ratio. Density rises slowly, however, only about 0.09% over 
forty years [22]. Gel fraction, in comparison, rises as much as 
13% in over just thirty-five weeks [68]. This dwarfs the impact 
of density whose role is to play only a small moderating 
influence, in this application, on how quickly tangent modulus 
rises over time. Sol fraction, i.e., 1 – fgel, is placed in the 
denominator since greater proportions of polymer sol lower 
modulus, owing to reduced level of matrix interconnection it 
represents. Using these criteria, the ratio is:

	 (3)

Application of this expression, Figure 4, reveals a 
continuous single function that can be used to predict 
ambient tangent modulus, independent of propellant 
formulation.

Figure 4. Composite solid propellant tangent modulus at 25°C at 
2.0 inches/min crosshead versus the dimensionless ratio

This example is illustrative owing to a lack of measured 
values for some of the ratio parameters from every formulation. 
Where specific values were not available, generic ones, typical 
of composite solid propellants, were used. For some 
(propellant density and cross link density) the same value was 
used for each formulation. Msol was arbitrarily varied, within 
the range of typical values, to yield the Fig. 4 smooth curve. 
Two different values were used across the four formulations, 
and these were not varied over time. It is possible that Msol 
could increase with time as oxidation serves to connect 
individual sol molecules to themselves, prior to their 
incorporation into the gel matrix, but its consideration was 
beyond the scope of this analysis. Crosslink density was also 
held constant over time. Although this is not realistic (crosslink 
density should increase as oxidation proceeds) it was 

mathematically simpler than manipulating it, along with Msol. 
The result would be the same. All the tests analyzed were run 
at a common strain rate, therefore the role of extension speed 
was not directly tested. However, the strong dependence of 
tangent modulus on strain rate is widely known. Values of 
parameters held constant over time are summarized in Table I. 
Gel fraction and density was varied over time based on the 
published data. Despite the noted simplifications and 
assumptions, this example shows excellent potential for a 
multi formulation tangent modulus model, or in other words, 
the range of each of the parameter values is large enough to 
easily allow for the possibility of the universal dimensionless 
ratio proposed here. Measurement of all the ratio parameters 
on all the formulations over time is needed to conclusively 
prove this approach is valid. The next phase of analysis sought 
to see if additional parameters having correlation with tangent 
modulus exist. A purely statistical approach was used to see if 
this might be the case.

Table 1. Dimensionless ratio parameter values

Parameter
Formulation

TP-H1139 ANB-3066 TP-H1011 MM Stage 2
(ANB-3066)

ε̇, min-1 0.74 0.74 0.74 0.74

Msol, g/g∙mole 88,000 88,000 880,000 880,000

ρx-link, g∙mole/ml 3,000 3,000 3,000 3,000

A Statistical Approach to Uncover Tangent Modulus 
Parameters

As the dimensionless ratio example shows, universal 
fundamental parameter relationships, describing behavior of 
solid propellant as a material class may exist. In this case the 
parameters were selected based on their known influence on 
stiffness. There may be, however, additional parameters 
whose influence is less obvious but may nevertheless play just 
as important a role. A purely statistical approach was taken to 
see if this is the case. The largest number of available 
parameters having some correlation with tangent modulus 
was assembled towards this goal.

Twenty-two parameters, Table 2, were analyzed of which 
295 observations were made [22, 68-70, 72]. They derive from 
acceleration testing of pure HTPB, and the four solid propellant 
formulations shown in Figure 3. A group of physical and 
mechanical properties were observed after samples were 
stored at various temperatures for different periods of time. 
The 295 x 22 matrix these data form was subjected to statistical 
analysis using IBM SPSS Statistics version 24 software.

Statistical analysis ranked the parameters in order of 
importance for prediction of tangent modulus, Table 3. The 
strongest interdependence is between ambient and 125°F 
tangent modulus. Several influential intrinsic physical 
parameters also emerged. They include gel iodine number, 
normalized density, percent of the matrix in a gel state, HTPB 
normalized absorbance, and sol iodine number. In pursuit of 
a fundamental basic model, analysis focused on the first four 
of the latter group (highlighted in Table 3). Iodine number 
was included only once.
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Table 2. Statistical analysis parameters
Propellant test 

parameters
Propellant physical 

parameters
Propellant mechanical 

properties
Tensile test pressure Matrix percent sol 75°F tangent modulus

Tensile test temperature Matrix percent gel 75°F maximum stress
Acceleration 
temperature

Iodine number sol 75°F strain at maximum 
stress

Acceleration time Iodine number gel 10°F tangent modulus
Total iodine number 10°F maximum stress
Hydroxyl equivalents 10°F strain at maximum stress
Aziridene equivalents 125°F tangent modulus

Total oxygen 
absorbed by HTPB

125°F maximum stress

HTPB normalized 
absorbance

125°F strain at maximum 
stress

Normalized 
propellant density, ρn

The physical parameters (shown in Table 3) were used to 
perform regression analysis for tangent modulus, as shown in 
Figure 5. The model has high correlation with its respective 
dependent variable, with R2 of 0.738. Iodine number is the 
most important physical correlation parameter. Iodine readily 
reacts with carbon-to-carbon double bond species. Thus, 
there appears to be a direct link to oxidation, a process that 
reduces the number of these chemical species on the HTPB 
polymer backbone over time.

Table 3. Importance of predicting parameter results, shaded 
parameters were used in regression prediction analysis 

Et,75°F
Prediction importance Predicting parameter
0.180 Et,125°F
0.120 Iodine No. gel
0.100 ρn

0.100 Gel % of matrix
0.080 HTPB normalized absorbance
0.070 Et,10°F
0.070 εm,10°F
0.070 εm,125°F
0.05 εm,75°F
0.04 Iodine No. sol

Figure 5. Ambient tangent modulus, at strain rate of 0.74 min-1, 
prediction model, R2= 0.738

Gel fraction and density, parameters that were included in 
the dimensionless ratio, appeared again. Finding that polymer 

double bond population also plays a role illustrated that a 
statistical approach could identify latent parameters that 
might otherwise have been overlooked. Dependence of 
tangent modulus on double bond population size is therefore 
a significant finding, as was normalized absorbance, which 
also emerged in the analysis.

Discussion 
The dimensionless ratio and SPSS statistical analysis of 

ambient tangent modulus suggest that a universal predictive 
model may exist. Reliance on formulation specific macroscopic 
empirical data, i.e., mechanical property, could therefore be 
reduced and eliminated. Universal algorithms can also guide 
development of new propellant formulations by giving insight 
on what target values of physical parameters to set to get a 
desired tangent modulus or other key macro scale parameter. 

More sophisticated statistical tools can provide means to 
identify the most important parameters from these propellant 
parameter data bases. Multi-variate analysis provides a means 
to study sets of simultaneous measurements on large groups 
of variables [73]. Cluster analysis is an exploratory technique 
to find subsets of related parameters [74, 75]. Each observation 
in a multivariate data set, consisting of individual values of 
each system parameter, is taken as a point in multi-
dimensional space [76]. Items (observations), in addition to 
variables, often segregate into natural groupings. This may 
provide new insight into the data. Cluster analysis is therefore 
a good place to begin investigation of solid composite 
propellant, whose groupings are unknown currently.

Distance between observational points in multi-
dimensional space can be used to reveal how many groups 
there are. The familiar square root of sum of the squares 
Euclidian distance is frequently the distance criterion used. 
Others exist. Subject matter knowledge can be used to 
identify the most useful groups, just as it was instrumental in 
building the tangent modulus dimensionless ratio. Variables 
are grouped according to correlation coefficient or some 
similar measure. The number of groups for any meaningful 
collection of observations and variables is extremely high. It is 
not practical to examine each one, even with high-speed 
computers. Algorithms are commonly used to search for the 
most promising groupings [77, 78].

Several clustering algorithms are commonly used, such as 
hierarchical methods [79, 80]. To begin, each observation is 
taken to be an individual cluster. The two closest are then 
merged, becoming a new cluster. This process repeats until all 
the data become a single large cluster. Cluster hierarchies 
found during this process often yield insight into the latent 
data structure. Nonhierarchical methods begin by either 
setting initial cluster seeds or randomly partitioning the items 
into groups [81]. The observations are then redistributed to 
different clusters, one at a time, using distance to the centroid 
(centroid is the desired outcome) of the nearest cluster as a 
criterion. Numerous analyses with different clustering 
algorithms and definitions of “distance” are often performed 
on a given data set. If the same clustering structure is 
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consistently obtained there is more confidence the results are 
meaningful. Comparison of hierarchical and nonhierarchical 
methods is a topic of ongoing research [82-84].

Many observations on a diverse group of parameters will 
be indispensable in pursuit of a universal solid propellant 
aging model. This must significantly exceed the set examined 
here to ensure that a significant number of meaningful 
clusters are identified; and errors through omission of latent 
phenomena are minimized. Given the large role that the 
polymer matrix plays, through its susceptibility to degradation 
over time, analysis of an expanded number of parameters 
related to its structure may be fruitful. Expansion of the types 
of experimental techniques used, beyond those historically 
employed, to probe structure could provide a means to 
accomplish this.

Nuclear magnetic resonance, for example, has been used 
to measure cross link density [85]. Light scattering might 
provide a means to make large numbers of observations on 
this class of matrix structure details [86, 87]. Size exclusion 
chromatography and asymmetric flow field flow fractionation 
can also be used to probe molecular configuration [88]. 
Differential scanning calorimetry can be used to observe 
changes in thermal decomposition details as propellant ages 
[89-92]. This may in some way correlate with matrix molecular 
structure. More recently, laser-induced breakdown 
spectroscopy (LIBS) has been used to study solid propellant 
aging [93]. Neutrons can be used to reveal two- and three-
dimensional structural details [94]. They readily pass-through 
iron but are attenuated by hydrogen and therefore may 
readily reveal matrix details of propellants contained within 
pressure vessels [95]. Neutron scattering has already been 
used to reveal polymer structural details [96-100]. And, of 
course, FTIR was found useful in discerning oxidation product 
species and their spatial distribution within the propellant as 
found by the investigators cited earlier. All these experimental 
methods may yield the large parameter set needed to make a 
meaningful statistical analysis of composite solid propellants 
down to the micro scale. This may well lead to a substantial 
advance in the understanding of aging, yielding a robust 
predictive model. To begin, measurements of pure HTPB 
samples could be made with each candidate technique to see 
if any of them reflect changes taking place in the polymer 
over time. Those that do could be taken forward to testing 
with composite solid propellant.

Conclusions
Propellant aging is dominated by multiple complex 

phenomena: polymer matrix oxidation, Mullins effect, and 
fatigue damage to name a few. This is in large part because of 
the large role propellant strength plays. Modeling is 
phenomenological. Significant empiricism is therefore 
involved, and extensive laboratory testing is required each 
time a new propellant formulation is studied. End of life 
prediction models run the gamut of simply determining when 
a key mechanical property has changed by a threshold 
amount to models that attempt account for the interaction of 

the various phenomena involved and predict when propellant 
fracture occurs. In short, there is no consensus on approach.

Dimensional and statistical analysis offers a way to reduce 
the level of empiricism now required. It was shown that strain 
rate, ambient storage time, the gel fraction of the matrix 
polymer, the polymer cross link density, the molecular weight 
of the polymer matrix sol fraction, solid propellant density, 
HTPB iodine number and HTPB normalized absorbance each 
may play a role in the determination of tangent modulus 
across multiple formulations. A universal model that not only 
forecasts a key parameter but also predicts how it changes 
over time is therefore possible. This has potential to reduce 
the amount of laboratory characterization required for 
exercising all existing aging models.

Clustering statistical analysis may reveal even more 
relationships, beyond those identified in the tangent modulus 
example we studied. It could lead to a standalone universal 
predictive model. Measurement of an expanded number of 
parameters, with an emphasis on polymer matrix molecular 
structural detail is a potential path forward. End of life 
prediction from just the details of the formulation (ingredients, 
weight percentages, and particle size distribution) and its 
lifetime environmental exposure may be possible. The 
universal predictive tool that would follow would be a boon 
to rocket motor designers, eliminating much empirical 
developmental and scale up testing now performed.
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