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Abstract
As the use of UAVs become an essential part of human exploration across the globe, 

GPS scarce environments like the polar regions present a challenge for UAV navigation 
due to ionospheric scintillation and poor position satellite geometry making it hard to 
regularly obtain reliable GPS data during navigation. To overcome this challenge, this 
paper will evaluate and compare the use of simple dead reckoning method vs dead 
reckoning based on the use of inertial navigation sensor INS/GPS based on Kalman 
Filter for UAV navigation in the polar regions. This research paper will evaluate and 
compare the errors associated with the Navigation parameters position, heading using 
both methods while in the geographic coordinate system reference frame.

Keywords: Dead reckoning method; UAV navigation; INS/GPS Integrated System.

Abbreviations: AFDS: Autopilot Flight Director System; COG: Course Over Ground; 
ECEF: Earth Centered Earth Fixed; FMC: Flight Management Computer; GNSS: Global 
Navigation Satellite Systems; GPS: Global Positioning System; INS: Inertial Navigation 
System; IRU: Inertial Reference Unit; LNAV: Lateral Navigation; NED: North East Down; 
UAV: Unmanned Aerial Vehicle; HDG: Heading.

Introduction
Ionospheric scintillation is known as the rapid modification of radio waves. This is 

caused by small scale structures in the ionosphere. Severe scintillation conditions can 
prevent a GPS receiver from locking onto the signal and can make it impossible to 
calculate a position. The presence of scintillation conditions can reduce the accuracy 
and the confidence of positioning results. This phenomenon is frequently observed in 
the high latitude regions.

In these Polar Regions, the occurrence of ionospheric scintillation is largely 
determined by solar wind disturbances coupling to the magnetosphere–ionosphere 
system, resulting in steep electron density gradients and irregularities. These disturbances 
impact the operation of modern technology that relies on global navigation satellite 
systems (GNSS). Ionospheric scintillation (rapid fluctuation of radio wave amplitude and 
phase) degrades GPS positional accuracy and causes cycle slips, leading to a loss of lock 
that affects the performance of radio communication and navigation systems and thus 
affecting aircraft navigation in the higher latitude regions [1]. To overcome these denied 
GPS instances, this paper will evaluate the use of integrated INS/GPS based on Kalman 
Filter to complement the GPS void and compare the results with the use of simple dead 
reckoning. The Kalman filter is an efficient mathematical algorithm using stochastic 
estimation from noisy sensor measurements to produce noise reduced state outputs by 
using both a prediction and observational model.
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INS and Use of Kalman Filter
Inertial navigation system is a self-contained navigation 

technique in which measurements provided by accelerometers and 
gyroscopes are used to track the position and orientation of an 
object relative to a known starting point, orientation and velocity. 
Inertial navigation is used in a wide range of applications including 
the navigation of aircraft, submarines, spacecraft and ships.

An inertial navigation system is composed of a computer 
and a module containing accelerometers, gyroscopes, or 
other motion-sensing devices. The INS is first provided with 
its initial position and velocity from another source like a GPS 
satellite receiver along with an initial heading but subsequently 
will update position and velocity by integrating information 
provided by the motion sensors. The INS advantage is that 
after initialization it does not requires external references to 
determine its position or heading.

All inertial navigation systems suffer from integration drift. 
Small errors in the measurement of acceleration and angular 
velocity are integrated into progressively larger errors in velocity, 
which are compounded into still greater errors in position [2]. 
Since the new position is calculated from the previous calculated 
position and the measured acceleration and angular velocity, 
these errors accumulation are roughly proportional to the time 
since the initial position was input. Therefore, the position or 
heading must be periodically corrected by input from some 
other data source like GPS. Estimation theory and Kalman Filter 
in particular, is used to provide a theoretical framework for 
reducing these INS accumulated errors over time [2].

The benefits of using GPS/INS integrated in the polar 
regions are that the INS will be corrected by the GPS signals 
when available and that the INS can provide position and 
heading updates regularly and at faster rate whenever GPS 
data is not available. When GPS signal is unavailable, the INS 
can continue to compute the position and heading during the 
period of lost GPS signal. The two systems can be complementary 
for situations where GPS outage is more frequent.

The following statement from the Boeing Aero Magazine 
journal [3] accurately describes the problem: “When a North 
Pole (N90EXXXXX or N90WXXXXX) or South Pole (S90EXXXXX 
or S90WXXXXX) waypoint is used near the poles, a rapid 
heading and track reversal occurs as the airplane passes over 
the waypoint. If the airplane is operating in HDG SEL or HOLD 
mode while near either pole, the crew will need to rapidly 
update the heading selector to reflect the changing or reversed 
heading. Otherwise, the autopilot flight director system (AFDS) 
will command an unwanted turn. For autopilot operation in the 
polar region using a roll mode other than LNAV, the TRUE 
position on the heading reference switch should be selected. 
However, LNAV is the preferred roll mode.”

Additionally, the same Boeing technical journal [3] explains 
that when global positioning system (GPS) updating have timed 
out or are no longer valid, it is necessary to phase out all position 
and velocity corrections gradually until the FMC navigation 
parameters equal the selected IRU (Inertial reference unit) 
position and velocity. Also, even when GPS updates are available, 
they are no longer used after crossing 88.5 degrees latitude 

while flying toward the pole, and the crew must gradually phase 
out position and velocity corrections before the pole is crossed. 
When crossing 88 degrees latitude flying away from the pole, 
GPS updates are enabled, available and are considered valid [3].

INS/GPS Integration
Integrating Inertial Navigation Systems (INS) with Global 

Navigation Satellite System (GNSS) receivers via the Kalman 
filter provides better accuracy for position in high latitude 
navigation. This paper will investigate the combination of INS 
and GNSS and their integration effect in reducing UAV 
navigation errors and provide better accuracy, reliability and 
integrity than either o1ne alone.

The main component of INS is the Inertial Measurement 
Unit (IMU), composed of three orthogonal accelerometers and 
three orthogonal gyroscopes (gyros) with known relative 
orientation. The accelerometers provide information on linear 
displacement of the vehicle, whereas the gyros provide 
information about its angular displacement and knowing initial 
attitude will allow continuous calculations of the vehicle’s 
attitude. Velocity and position of the vehicle are obtained 
through single and double integration of accelerations from 
accelerometers. Prior to integration, the accelerations must be 
transformed from the body frame of reference to the navigation 
frame of reference and the integrations must be initialized with 
the known starting velocity and position of the vehicle [4].

INS is a navigation instrument providing a complete set 
of information on position, velocity and angular orientation. 
Its main advantage is that its output data is available at a very 
high rate compared to GPS, making navigation continuous 
and responsive to rapid maneuvers of the vehicle. The main 
disadvantage of INS is the growing error increase over time in 
the absence of another sensor source to provide correction. 
This can result in greater position inaccuracies over time.

INS/GPS Integrated Sensor model based 
on Kalman Filter

GPS satellites positions are expressed in Earth-centered 
Earth fixed (ECEF) Cartesian frame of reference WGS-84. The 
coordinates in ECEF can be presented as (x, y, z) or in 
geographic coordinates as latitude, longitude and height (ϕ, 
λ, h). GPS/INS errors will be modelled in navigation frame of 
reference NED (Figure 1).

Figure 1. ECEF Frame of Reference and local horizontal frame NED [4].
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The INS/GPS system has a time propagation of INS errors 
(Figure 2) and GPS clock errors. Modeling INS errors can be 
very complex and may contain even many states of complexity 
[4]. Most of these error states can be eliminated without 
affecting the INS accuracy and can be reduced to an eight-
state model. The GPS receiver clock errors which are mainly 
bias, and drift are modeled as a 2-state random process [5,6]. 
The GPS receiver clock bias and drift are estimated along with 
other variables and their model and are used to augment the 
INS errors model.

GPS is inherently a positioning system that can also derive 
velocity and acceleration from its code and carrier phase 
measurements [6]. GPS data can also be lagging or missing 
due to external factors like tall buildings or ionospheric 
scintillation. An inertial navigation system, on the other hand, 
senses acceleration and rotational rates and can derive 
position, velocity, and attitude/heading from them. INS 
provide very high fidelity short term dynamical information 
while GPS provides noisy but very stable positioning and 
velocity information over the long term [6]. Figure 3 below 
depicts a high-level block for a typical GPS/INS system. An 
inertial measurement unit generates acceleration (Dv) and 
rotation rate (Du) data at high rates typically in the range of 
tens or hundreds of hertz. A strapdown algorithm then 
accumulates these incremental measurements of Dv and Du 
to generate a reference trajectory consisting of position, 
velocity and attitude/heading with high dynamic fidelity [6]. 
The GPS generates data at lower rates typically one to ten 
hertz. These two sensors are intrinsically very complementary 
in nature and so the integration of these types of sensors is 
very much a natural fit.

Figure 2. INS Sensor Generated Errors [2].

Figure 3. High-level block diagram of GPS/INS mechanization [6].

Our error state system model is composed of the 
integration of INS and GPS. Our state space variables are 
made of position, velocity, attitude errors and inertial sensor 
biases.

The dynamics model of the INS/GPS system describes 
time propagation of INS errors and GPS clock errors. The 
input of Kalman Filter is the mixed of GPS and INS errors. 
After the filtering process, the random noises mostly come 
from GPS are removed, the remained INS errors are added to 
INS output to get the correct navigation value.

Finally, the augmented model of INS/GPS system contains 
10 states, 8 for INS and 2 for GPS receiver clock. The differential 
equations of the GPS/INS error model propagation can be 
derived as follows [6]:

Let R=[ϕ, λ, h] be the UAV position in the geographic 
coordinates system. P=[N, E, D] the UAV position and V=[Vn, 
Ve, Vd] the velocity vector in the NED frame.

The INS/GPS error state vector in the ECEF frame can be 
expressed as : 𝑋=[δ𝑥𝑛, δ𝑣𝑛, δ𝑎𝑒, δ𝑥𝑒, δ𝑣𝑒, δ𝑎𝑛, δ𝑥𝑑, δ𝑣𝑑,b, d ]T

The INS/GPS error state vector in the NED frame can be 
expressed as: 

𝑋=[δN, δ𝑉𝑛, 𝜑𝑒, δE, δ𝑉𝑒,𝜑𝑛,δD, δ𝑉𝑑,b, d ]𝑇

where: δN is the INS position error along the North axis 
[m],

δ𝑉𝑛 - INS velocity error along the North axis [m/s],
𝜑𝑒 - INS attitude error around the East axis [rad],
δE - INS position error along the East axis [m],
δ𝑉𝑒 - INS velocity error along the East axis [m/s], 
𝜑𝑛 - INS attitude error around the North axis [rad], 
δD - INS position error along the Down axis [m], 
δ𝑉𝑑 - INS velocity error along the Down axis [m/s], 
b - GPS receiver clock bias [m], 
d - GPS receiver clock drift [m/s],
Let g - gravity acceleration, R - Earth’s radius (spherical 

model).
Let U be the discrete random process disturbance vector 

U=[u𝑣𝑛, u𝜑𝑒, u𝑣𝑒, u𝜑𝑛, u𝑣𝑑, ub, ud]

Let’s assume that X=[δN, δ𝑉𝑛, 𝜑𝑒, δE, δ𝑉𝑒, 𝜑𝑛, δD, δ𝑉𝑑, b, d]𝑇 
is the initial INS/GPS error after loosing GPS. We will compare 
error growth of X over time with the use of Kalman Filter and 
without the use of the filter to evaluate the stated hypothesis 
below. At time 𝑡𝑘 we will compare error 𝑋𝑘 with 𝑋𝑘−1 then 
without the use of INS/GPS based Kalman filter.

H0: The use of GPS/INS integrated sensor based on 
Kalman filter does not reduce position sensor data errors 
caused by polar regions ionospheric scintillation and poor 
satellite positioning geometry.

H1: The use of GPS/INS integrated sensor based on 
Kalman filter reduces position sensor data errors caused by 
polar regions ionospheric scintillation and poor satellite 
positioning geometry.

Let’s consider the raw data with the Kalman filter-based 
INS/GPS.

This consists of Integrating Inertial Navigation Systems 
(INS) with Global Navigation Satellite System (GNSS) receivers 
via the Kalman filter to see if it can reduce errors for position, 
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velocity and attitude for UAV in navigation in the polar 
regions. In integrating INS with GPS, the measurement vector 
is composed of differences between data of the INS/GPS and 
the data from Kalman Filter which is the correcting system. 
The measurement vector contains combinations of errors of 
type GPS and INS. The Kalman filter does the estimates of 
error states, representing GPS/INS errors.

In systems consisting of feed-forward correction, 
increasing INS errors are estimated by Kalman Filter and 
subtracted from INS outputs outside of the inertial system. In 
INS/GNSS systems consisting of feed backward correction, 
the estimates of INS errors are introduced to the inertial 
system itself and correct its position, velocity and attitude 
internally (Figure 4).

Figure 4. Feed forward Feedback aided INS [7].

In continuous time 
where: x-state vector, u-vector of continuous random 

process disturbances, F-Transition matrix of the system, 
G-matrix of continuous process disturbances.

The Covariance Matrix 
Next, we convert the continuous dynamic model to a 

discrete model. Then we obtain the transition matrix ϕ and 
the covariance matrix Q of discrete random process 
disturbance w defined above.

X(k+1)=ϕ(𝑘+1,𝑘)𝑋(𝑘)+𝑤(𝑘)
From  take the Laplace transform to get: 

sX(s)–x(0)=FX(s)
So, x(0)=sX(s)–FX(s)=>(sI–F)X(s)=x(0)=>X(s)=(𝑠𝐼−𝐹)−1𝑥(0)
The inverse transform is then X(t)=𝐿−1(sI−F)−1x(0) therefore 

ϕ=L−1(sI−F)−1

Figure 5. General two state model.

Figure 5 shows general two state model describing clock 
errors. The independent white noise uf and ug have spectral 
amplitudes of Sf and Sg [6].

Figure 6. Position Velocity [6].

Next, we find the Q parameters of the state model 
following Allan variance parameters that are often used to 
describe clock drift [6]. We begin by writing the expressions 
for the variances and covariances for the general two-state 
model shown in figures 5 and 6. The clock states Xp and Xf 
represent the clock phase and frequency error, respectively. 
The independent white noise uf and ug have spectral 
amplitudes of Sf and Sg. Let the elapsed time since starting the 
white noise inputs be Δt.

Then we have:

For i=1,3,5
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INS/GPS Model Measurement Phase
The system provides a measurement of position and 

velocity, then those measurements can be obtained as

.
Let Z be the difference between GPS and INS position
Z(t)=H(t)*X(t)+V(t) or in discrete form 𝑍𝑘=𝐻𝑘𝑋𝑘+𝑣𝑘

The INS position errors in this equation are expressed in 
ECEF frame of reference but the elements of state vector are 
expressed in NED frame (Δ𝑁,Δ𝐸,Δ𝐷). We need to introduce 
transformation of coordinates. This can be realized by 
multiplying INS position errors from the state vector by the 
NED to ECEF coordinate transformation matrix e [5,6]

Let βi – be the UAV-satellite range from the ith satellite,
Let  be the INS dead reckoned UAV-satellite range 

for i-th satellite, we will assume access to 10 satellites. Let 
 be the GPS UAV- last known satellite range for i-th 

satellite
Then we have the observation

With 
Let 𝑋𝑖, 𝑌𝑖, 𝑍𝑖 - i-th satellite position, x, y, z - true UAV GPS 

position, and 𝑋𝑖𝑛𝑠, 𝑌𝑖𝑛𝑠, 𝑍𝑖𝑛𝑠 - UAV position from INS,

Here H=[𝐻1(1), 0𝑚𝑥1, 0𝑚𝑥1, 𝐻1(2), 0𝑚𝑥1, 0𝑚𝑥1, 𝐻1(3), 0𝑚𝑥1,−1𝑚𝑥1, 
0𝑚𝑥1] where 

𝐻1(i) means the i-th column of H1 matrix

with m going up to 10

Let’s find R the measurement error covariance matrix for Vk

They are assumed to be Gaussian zero-mean white noises 
of variances

σa=0.10 m/s2 modeled vehicle acceleration, σb=0.015 m/s2 
modeled accelerometer bias

Assume the following:
Initial position variance 10 m2, initial velocity variance 

0.001 m/s2, initial attitude variance 0.001 rad2
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Assume Sf=1.38 × 10-4, Sg=3.54 × 10-6, Sp=0.01 m/s2/Hz 
then Q is

Then

and prediction step is:

The Kalman gain is:

and the correction step is:

from measurement and model observation:
the pseudo range measurement is represented by: ρ=ψ+βρ+vρ

ψ=noiseless pseudo range consisting of geometric range and 
range error due to receiver timing error.
βρ=time correlated errors associated with pseudorange
vρ=pseudo range measurement noise [6]
The carrier phase measurement is represented by ϕ=ψ+𝑁ϕ+𝛽ϕ+𝑣ϕ

𝑁ϕ=range uncertainty also called integer cycle ambiguity
𝛽ϕ=time correlated errors associated with carrier phase
𝑣ϕ= carrier phase measurement noise [6]

Figure 7. Complementary Kalman filter combining continuous carrier 
phase and pseudo range data from GPS signal measurement [6].

For the complimentary filter in figure 7, the carrier phase 
measurement representing the reference information is 
subtracted from the pseudo range measurement and the 
residual is feedback to a Kalman filter. Having extracted the 
observer’s dynamics, the resulting data appears to the Kalman 
filter as if the modified measurement was stationary [6].

Position error model
Using the NED and ECEF coordinate transformation 

matrix

Now Here H=[𝐻1(1), 0𝑚𝑥1, 0𝑚𝑥1, 𝐻1(2), 0𝑚𝑥1, 0𝑚𝑥1, 𝐻1(3), 
0𝑚𝑥1,−1𝑚𝑥1, 0𝑚𝑥1] where

𝐻1(i) means the i-th column of H1 matrix here m=3 for 
simplicity
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The Kalman gain is: 

and the correction step is: 

Where

After calculations K is found to be

Simulation Data and Results
The designed integrated INS/GPS positioning system for 

the UAV has been tested using computer simulations. The 
simulations have required generation of northern latitudes 
trajectories for the UAVs. In this simulation GPS outage occurred 
in high latitude starting at position 81 N. This paper ran several 
simulation scenarios where the outage lasts different periods up 
to 40 min. A sample outage graph of 80 sec is shown in figures 
8 and 9 where incremental and cumulative errors are shown.

Flight Data Position Latitude, Flight Data Position 
Longitude, INS position error North, INS position error East, 
INS position error down, Cumulative INS position error North, 
Cumulative INS position error East, and Cumulative INS 
position error East have been generated based on the Kalman 
filter INS/GPS calculations developed above and GPS receiver 
clock bias and drift as well as INS errors.

With the use of Kalman filter, the incremental positioning 
errors of INS decrease with the time of operation as the filter 
becomes more accurate in prediction, allowing slow 
cumulative error increase and high tolerance of loss of GPS 
(see figure 8). If the prediction becomes worse over time, the 
incremental position errors get worse causing increasing 
cumulative errors and low tolerance of loss of GPS.

Figure 8. Incremental Position error with Integrated GPS/INS.

Figure 9 below shows the cumulative INS error increase in 
the absence of GPS with the use of Kalman filter. With the 
time increase, the INS cumulative errors grow and the Position 
Uncertainty becomes more and more unreliable. The Kalman 
filter allows a slow error growth as the incremental errors 
decrease with time (Figure 8).

Figure 9. Cumulative INS position errors.
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Simulation of the data is shown in appendix 10 and the 
following output data has been collected after a simulation of 
several time intervals and up to 40 min: Flight Data Position 
Latitude, Flight Data Position Longitude, INS position error 
North, INS position error East, INS position error down, 
Cumulative INS position error North, Cumulative INS position 
error East, and Cumulative INS position error East. The simulation 
was running at a frequency of 1 and 2 Hz. Next, we plotted the 
cumulative INS position errors for 10 min (Figure 10) and 
incremental errors for a period of about 30 min (Figure 11). 
Figure 11 shows that after 30 min the incremental Position error 
values go to zero due to Correction from the Kalman filter. This 
simulation shows that the cumulative INS position errors grow 
but become bounded because the incremented position errors 
are decreasing with the use of the Kalman Filter.

Figure 10. Cumulative INS position errors for 10 min period.

Figure 11. Incremental INS Position errors.

Figure 12. Cumulative INS position errors for 40 min period.

Figure 12 shows the cumulative INS errors leveling off 
after 30 min which is the time after which the incremental INS 
position errors get close to 0 as shown in figure 11. 

Next this paper analyzed the case of periodic GPS outage of 
up to 2 minutes shown in figure 13. This simulation is the case of 
a periodic GPS outage of 2 min i.e. losing GPS for 2 min getting 
it back for 1 sec and losing it again for 2 min. In this case, the 
cumulative position error N, E, D reset to 0 every 2 minutes due 
to reception of new GPS data to provide correction.

Figure 13. Periodic GPS outages of 9 min.

GPS Sensor without Kalman Filter
Dead reckoning is the process of calculating the UAV 

position by using a previously known position and advancing 
that position based on estimated speed, course and other 
variables. Dead reckoning can give very good information on 
position, but it is subject to errors due to speed and direction 
that must always be accurately known for the position to be 
correct. Since each estimate of position is dependent on the 
previous one, errors are cumulative.

The dead reckoning error model system contains 8 states. 
The differential equations of the error model propagation can 
be derived as follows:

Let R=[ϕ, λ, h] be the UAV position in the geographic 
coordinates system. P=[N, E, D] the UAV position and V=[Vn, 
Ve, Vd] the velocity vector in the NED frame.

The dead reckoning error state vector in the ECEF frame 
can be expressed as : 𝑋=[δ𝑥𝑛, δ𝑣𝑛, δ𝑎𝑒, δ𝑥𝑒, δ𝑣𝑒, δ𝑎𝑛, δ𝑥𝑑, δ𝑣𝑑]𝑇

The dead reckoning error state vector in the NED frame 
can be expressed as : 𝑋=[δN, δ𝑉𝑛, 𝜑𝑒, δE, δ𝑉𝑒, 𝜑𝑛, δD, δ𝑉𝑑]𝑇

where: δN is the dead reckoning position error along the 
North axis [m],

δ𝑉𝑛 - DR velocity error along the North axis [m/s],
𝜑𝑒 - DR attitude error around the East axis [rad], 
δE - DR position error along the East axis [m], 
δ𝑉𝑒 - DR velocity error along the East axis [m/s], 
𝜑𝑛 - DR attitude error around the North axis [rad], 
δD - DR position error along the Down axis [m], 
δ𝑉𝑑 - DR velocity error along the Down axis [m/s], 
Let g - gravity acceleration, R - Earth’s radius (spherical 

model).
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Let’s assume that 𝑋=[δN, δ𝑉𝑛, 𝜑𝑒, δE, δ𝑉𝑒, 𝜑𝑛, δD, δ𝑉𝑑]𝑇 is 
the initial GPS error after losing GPS. We will analyze error 
growth of X over time without the use of the filter to evaluate 
the stated hypothesis on page 10. At time 𝑡𝑘 we compared 
error 𝑋𝑘 with 𝑋𝑘−1 without the use of Kalman filter.

In estimating the error growth of X without the use of 
Kalman Filter, let Δ𝑡 be the dead reckoning increment time, let 
Crs and Hdg be the last course and heading error values due 
to drift since the last GPS reading.

Then δ𝑁1=δN+sin (Hdg).δ𝑉𝑛.Δ𝑡, δ𝐸1=δE+cos(Hdg).δ𝑉𝑒.
Δ𝑡, δ𝐷1=δD (cos(𝜑𝑛)+sin(𝜑𝑒)) δ𝑉𝑑. Δ𝑡/2

For the next iteration δ𝑁2=δ𝑁1+sin(Hdg).δ𝑉𝑛.Δ𝑡, 
δ𝐸2=δ𝐸1+cos(Hdg).δ𝑉𝑒. Δ𝑡, 

δ𝐷2=δD(cos(𝜑𝑛)+sin(𝜑𝑒)) δ𝑉𝑑. Δ𝑡/2
δ𝑁2=δN+2sin(Hdg). δ𝑉𝑛. Δ𝑡, δ𝐸2=δE+2cos(Hdg). δ𝑉𝑒. Δ𝑡, 

δ𝐷2=δD
after k iterations we have δ𝑁𝑘=δN+k*sin(Hdg). δ𝑉𝑛.Δ𝑡, 

δ𝐸𝑘=δE+k*cos(Hdg). δ𝑉𝑒.Δ𝑡,
δ𝐷𝑘=δD+k(cos(𝜑𝑛)+sin(𝜑𝑒)) δ𝑉𝑑. Δ𝑡
The position error growth is [k*sin (Hdg). δ𝑉𝑛.Δ𝑡, 

k*cos(Hdg).δ𝑉𝑒.Δ𝑡, k(cos(𝜑𝑛)+ sin(𝜑𝑒)) δ𝑉𝑑. Δ𝑡/2] becomes 
unbounded with time unlike the case of INS/GPS where the 
error is bounded with the use of Kalman filter (see figure 14) 
below. Comparing figures 12 and 14, we can see that in the 
dead reckoning case the cumulative position error North, East 
and Down is much higher and becomes quickly unbounded 
(Figure 14) if no GPS data is received whereas in the case of 
integrated INS/GPS based on Kalman filter, the position error 
is bounded (Figure 12). If we compare the cumulative errors 
at 500, 1000, 1500, 2000 and 2500 seconds we get the table 1 
below.

Figure 14. Dead Reckoning cumulative position error (40 min).

Table 1. The output for dead reckoning position errors and INS/GPS 
based on Kalman filter position errors.

Time(s) 500 1000 1500 2000 2500
DR Pos Error N (M) 173 347 521 695 867.9
DR Pos Error E (M) 491 984 1477.2 1868.63 2461
DR Pos Error D (M) 332 665 999 1331.43 1664
INSGPS Pos Err N (M) 56 112 168 224 280
INS/GPS Pos Err E(M) 47 94 141 188 235
INS/GPS Pos Err D (M) 62 124 186 248 310

Table 1 shows the output for dead reckoning position 
errors and INS/GPS based on Kalman filter position errors. 
The variance, the mean and standard deviations are calculated 
for the 3 cumulative position errors. The simulation data for 

the integrated GPS/INS based on Kalman Filter shows that 
these means are 144 m, 630 m, 138 m respectively for 
Cumulative Position North, East and Down and 25.11, 14.93 
and 27.18 for STDV and the variances of 630, 223 and 739 m. 
The simulation for the simple dead reckoning case shows that 
the means are 696, 1974 and 1335 m. These values are used 
to determine the Z score in high latitude position errors.

Given an error in dead reckoning position North, East and 
Down in the simulated data its z score is defined by 
z=sqrt(N)*(x-u)/ơ where u and ơ are the mean and standard 
deviations of position errors associated with the use of 
Kalman Based filter integrated INS/GPS. From the DR position 
errors in the simulated data, it shows that the average DR 
position errors North, East and Down are 696 m, 1974m, 1335 
m. The corresponding z scores are 406575.69, 5513920.2, 
1386504 per the simulated data which leads to a probability 
value of 0. Recall our null and alternative hypothesis:

H0: The use of GPS/INS integrated sensor based on 
Kalman filter does not reduce position sensor data errors 
caused by polar regions ionospheric scintillation and poor 
satellite positioning geometry.

H1: The use of GPS/INS integrated sensor based on 
Kalman filter reduces position sensor data errors caused by 
polar regions ionospheric scintillation and poor satellite 
positioning geometry.

Let’s consider the raw data with the Kalman filter-based 
INS/GPS. From our previous assumptions we assume a level 
of confidence C of 0.95; hence α=0.05. The critical Z score 
values when using a 95% confidence level are -1.96 and +1.96 
standard deviations. The p-value associated with a 95% 
confidence level is 0.05. When the Z score is between -1.96 
and +1.96, then the p-value will be greater than 0.05, and the 
null hypothesis cannot be rejected. Our P value will be the 
Probability of obtaining while in dead reckoning mode a 
sample with mean error equal the mean error observed in the 
INS/GPS integrated case with the Kalman filter assuming H0 is 
true; but since our P value is 0 less than α=0.05 we therefore 
reject the null hypothesis. Therefore, the use of GPS/INS 
sensor based on Kalman filter reduces sensor position data 
errors caused by Polar Regions ionospheric scintillation and 
poor satellite positioning geometry.

Conclusion
In this paper, a UAV polar navigation using INS/GPS 

integrated system is studied in order to compensate for the 
GPS denied environment limitation of UAV Polar Region 
operations. To model the error values, a 10-state linear 
Kalman Filter is implemented, and errors are evaluated 
comparing the INS/GPS integrated based on Kalman filter vs 
the simple dead reckoning case. With the INS/GPS system 
integrated using this configuration, it’s possible to fly the UAV 
with relative high accuracy when GPS signal is integrated with 
INS based on Kalman filter. The data shows that in the absence 
of GPS, INS errors are dampened by Kalman filter to allow for 
position error-controlled navigation until the availability of 
GPS which is again used as a source of feedback for the INS. 
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The simple dead reckoning case following GPS loss shows 
unbounded position errors and it is not a reliable method 
compared to the integrated GPS/INS. While in GPS outage 
mode, the integrated INS/GPS system achieved better 
performance using Kalman filter compared to simple dead 
reckoning.
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