
10Volume 1 • Issue 1 • 1000103Int J Aeronaut Aerosp Eng.
ISSN: 2643-8224

International Journal of
Aeronautics and Aerospace Engineering

Research Article Open Access

When is the Design Complete?
Neil G Siegel*
The IBM Professor of Engineering Management, Department of Industrial and Systems Engineering, University of Southern California, USA

Article Info
*Corresponding author:
Neil G Siegel
The IBM Professor of Engineering
Management
Department of Industrial and Systems
Engineering
University of Southern California
USA
E-mail: siegel.neil@gmail.com

Received: January 12, 2019
Accepted: February 1, 2019
Published: February 8, 2019

Citation: Siegel NG. When is the Design
Complete? Int J Aeronaut Aerosp Eng. 2019;
1(1): 10-18.
doi: 10.18689/ijae-1000103

Copyright: © 2019 The Author(s). This work
is licensed under a Creative Commons
Attribution 4.0 International License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the
original work is properly cited.

Published by Madridge Publishers

Abstract
Almost every software-development and software-intensive system-development

methodology calls for the design to reach some level of maturity before the team moves
into software and system implementation. Yet data from many sources indicate that a large
percentage of software and system-development programs encounter significant difficulties.
Data from my own work fixing such problem programs indicates that the major recurring
theme across such problem programs is that the design was inadequate for the task at
hand; this, of course, should have been detected during the design phase, before the
program moved on to implementation, integration, and test. In this paper, I examine
indications from a number of real programs to determine why the design is so often
inadequate; one of the key findings is that our standard methods, processes, indicators, and
metrics for determining if the design is complete are seriously flawed. A proposal for better
design-completion indicators is provided, and the implications for practice discussed.

Keywords: Software Development Practices; Software Development Metrics; Software
Development Procedures; Software Design; Software Management; System Architecture
Skeleton; System Design; System Development; Design Metrics; System-Development
Metrics; Independently-Schedulable Software Entities; Software-intensive systems;
Software-intensive system development.

Background
The world of software and software-intensive systems development is full of metrics,

covering many different topics: estimation of time and effort before the development
process starts (a field pioneered by Boehm [1]), indicators of software quality and complexityi,
and so forth.

One would expect, therefore, for there also to be a robust set of metrics for
measuring the technical progress of a design, and how one could use such metrics to
determine when a design is complete.

There is, in fact, quite a lot of guidance for how to conduct the design phase of a
development programs: dozens of checklists, suggested representations, suggested
reviews, and so forth. Included in this guidance for the design phase are activities
designed to assess progress. However, most of this guidance (whether from INCOSE,
the IEEE, corporate processes, government standards documents, etc.) for assessing
progress is based on the use of management indicators to evaluate progress through
the design phase, things like “create these representations”, “hold these meetings”,
“conduct these reviews”.

But the design is not solely a management activity; at heart, design is a technical activity!
One can therefore ask where are the technical guidelines, methods, metrics, and indicators
that tell us when the design is mature enough to as to allow a development team to know

i	 Such as http://searchsoftwarequality.techtarget.com/guides/Quality-metrics-A-guide-to-measuring-
software-quality, but many others, as well.

ISSN: 2643-8224

https://doi.org/10.18689/ijae-1000103
http://searchsoftwarequality.techtarget.com/guides/Quality-metrics-A-guide-to-measuring-software-quality
http://searchsoftwarequality.techtarget.com/guides/Quality-metrics-A-guide-to-measuring-software-quality

International Journal of Aeronautics and Aerospace Engineering

11Int J Aeronaut Aerosp Eng.
ISSN: 2643-8224

Volume 1 • Issue 1 • 1000103

that they are ready to move into an implementation phase, and
can reasonably have confidence that the multiple people building
the individual components of the software will create entities
that, when brought together and integrated, will perform with
the functionality, capacity, reliability, and other characteristics
that are appropriate for this software program or system?

We all are aware that software and system development is
a difficult business; many, many development programs fail.
For example, Glass [2] is one of many sources that report more
than half of all major software development programs fail.

In this paper, I raise the hypothesis that the root cause of
many of these software and software-intensive-system
development failures (“failures” in the sense of having significantly
late deliveries, inadequate capabilities, significant cost overruns,
cancellation, rejection by the users, and often, some combination
of all of these factors) are due to inadequate design, especially,
inadequate software design. I raise the related hypothesis that
one of the causes of these inadequate software designs is that
we have few ways to tell if the software design is actually
complete; if the design is in fact not yet complete when we enter
the implementation phase, what happens is that the design is
completed informally by dozens (or even hundreds) of separate
programmers, working most likely without effective design
coordination. This is sure to lead to design inconsistencies that
show up during integration as those hard-to-find and hard-to-
solve problems that drive programs into significant cost and
schedule overages.

The literature has examined the question of why software
development programs fail. A typical view is as follows (Figure 1):

Figure 1. Data from the Standish Group (via Barry Boehm [1])
regarding their view of the root-cause of failures in software-

development projects.

This is perhaps not as illuminating as it might seem, with
the largest category by far being “other”. If there is a trend or
lesson in these data, it is that the authors believe the
problem probably lies in the requirements process; many
of the items highlighted in yellow (highlighting in Boehm’s
original) pertain in one way or another to requirements. The
literature even has a favorite phrase: “requirements creep”,
the notion that programs get into trouble because we let the
user keep adding new requirements to the system
specification, even after we have moved past the initial

requirements phase. This is also a favorite conclusion of
textbooks (such as Flowers [3]), university courses, corporate
guidance documents (such as Northrop [4]), and Government
lessons-learned reports (such as Army [5]).

The data in Figure 1 dates from 1995, but more recent
data provides similar conclusions; for example, Symonds [6]
provides the following list of her 15 most-common causes of
system-development project failure (Figure 2).

Figure 2. Data from Symonds: her list of the most-common causes
of system-development project failure.

Items 1, 3, 10, and 11 on her list all relate to requirements.
She rates items 1, 2, and 3 as the most important; note that 2 of
these 3 explicitly relate to requirements: requirements are a
major portion of the definition of project scope, and the place
where we identify most of the key assumptions, including such
items as data and components to be provided by the customer.

In summary, according to the literature, the fairly consistent
“villain” of the failed-software-development (and, therefore, also
of the failed software-intensive system development) story is
requirements creep.

I find this to be a suspect conclusion, because it does not
account for the observed highly non-linear outcomes. For
example, a program team which had been predicting for
many months that they were going to finish the project within
its planned budget might suddenly make a new prediction
that their system will cost five times as much money to build
as was in its original estimate. They might attribute this
increase in cost to “requirements creep”.

Unfortunately, this is not a rare occurrence; not only do we
frequently see such very large adverse changes to the predicted
development cost of a system (and also, to the development
schedule), we also all-too-often see such adverse changes in
the predictions to key performance factors, e.g., systems that
are now predicted to perform 100 times slower than promised,
be 100 times less reliable than promised, and so forthii.

ii	 I don’t cite development programs by name here (although I could!),
in the interest of not embarrassing people. But anyone familiar with
the literature will be able to provide their own examples.

International Journal of Aeronautics and Aerospace Engineering

12Int J Aeronaut Aerosp Eng.
ISSN: 2643-8224

Volume 1 • Issue 1 • 1000103

I find the conclusion that the root-cause of these adverse
changes is requirements creep to be suspect, because my
experience is that requirements creep is fundamentally a linear
factor: adding 10% additional requirements to a program
might increase cost by somewhat more than 10%–some
requirements are harder to implement than others–but because
requirements are generally decomposed into a large number
of “small” statements, my experience is that the effect over a
large number of changes tends to be approximately linear.

The change that we find–as noted above–to the prediction
for cost (and usually, schedule), however, is often highly non-
linear: the project has in fact added 10% to the number of
requirements, but the predictions about cost and schedule
have increased 500%, and the predicted system performance
capacity has degraded 10,000%, and so forth.

The true root cause ought to be one that inherently can
explain such non-linear changes; requirements creep does
not offer that explanation.

I spent several years of my career as a sort of a designated
“fixer of problem projects” at a large aerospace company.
Most of these projects displayed predictions similar to those
cited above: a few percent of changed requirements, but
many multiples of increase in development cost and schedule,
and even more radical decreases in predicted (or measured)
system performance.

These assignments allowed me to dig deep into the actual
root cause that caused the adverse changes. What I saw as
the consistent root problem was quite different than
requirements creep; my findings were that in some
fundamental sense, the design was almost always inadequate,
and therefore the implementation effort was doomed. I also
found a consistent root cause in the designs of these systems
that could explain the non-linear behavior of the predictions.

My Experiences and My Findings
During my career, I have found that, by count, the largest

portion of a typical system requirements specification are the
functional requirements; e.g., “use this algorithm”, “in response
to this action, display this information”, and so forth. Since these
functional requirements form the largest portion of the
requirements specification (usually, well over 95% of the
requirements, by count), they receive the most attention from
the design and test teams, and in general, the resulting designs
are effective at implementing those requirements. These design
elements share one important characteristic: they can be
designed and analyzed through essentially static representations,
such as functional decomposition, implementation hierarchies,
flow-charts, algorithm development, algorithm modeling, and
so forth.

The remaining (and generally, by count, quite small)
portion of the requirements specification deal with what are
sometimes called the quality characteristics of the system:
performance rates, capacities, timing, reliability, and so forth.
These design elements share one important characteristic,
too: they can only be designed and analyzed through

representations of the dynamic behavior of the system. My
conclusion from my experience fixing these problem programs
was that our systems are too often burdened by an inadequate
design for the dynamic behavior of the system.

The design for controlling the dynamic behavior of a
system needs to come in two parts: (a) the mechanisms for
implementing the dynamic behavior we want (e.g., threads,
inter-process communications, signals, rendezvous and
synchronization, and so forth), and (b) the mechanisms for
excluding/prohibiting the dynamic behavior that we do not
want. My findings (Siegel [7,8]) are that designers sometimes
do an adequate job on the first of these items, but seldom do
an adequate job on the second. This lack turned out to be
the root cause for almost every problem program I have been
called upon to fix over the course of my career, and is therefore
my candidate for the true (but often, unnoticed) root cause of
many system-development failures. I have coined the term
“unplanned dynamic behavior” to denote the actions that
take place within a system that cause highly non-linear
degradations in capacity (100x is not uncommon), reliability
(1,000x is not uncommon), port-to-port timing, and so forth
(Siegel) [7].

This leads to the following typical failure scenario for an
engineering project:

•	 During the requirements, design, and implementation
stages, all of the measurements indicate that the
project is completely on time and on budget. All is well.

•	 Then, the project enters the integration stage.
•	 During the integration phase, multiple pieces are put

together into larger and larger sub-assemblies, and
these sub-assemblies are executed. It is at this point
that major problems start to occur: things that appeared
to work well in the individual parts start showing signs
of very significant problems. The system crashes every
ten minutes; the system processes data 100 times
slower than it is intended to do so; and so forth.

•	 The team laboriously tracks down these issues one-by-
one. Each problem takes far longer to find and fix than
thought it would; as a result, our predicted project end-
date starts “slipping to the right” as fast as the calendar
progresses, or even faster. Each problem turns out to
be a problem of unplanned dynamic behavior: not a
problem with the individual parts, but instead with the
way that the parts interact. Typical problems are that, at
times, processing steps accidently occur out of their
planned sequence; processing steps take longer than
planned, and timing margins are missed; processing
steps queue up unexpectedly, causing conditions akin
to turbulence on communications paths, which in turn
degrades performance and causes delays in timing; off-
nominal data (outliers) or unexpected actions by the
users cause the system to behave badly.

•	 The team works hard to fix each issue. But there
seems to be no end to the occurrence of such
problems; fixing one does not prevent new examples

International Journal of Aeronautics and Aerospace Engineering

13Int J Aeronaut Aerosp Eng.
ISSN: 2643-8224

Volume 1 • Issue 1 • 1000103

of such bad behavior from occurring. No prediction
about progress towards the completion of our project
turns out to be justified; the predicted end-date just
keeps slipping. And people get discouraged: they
work very hard and fix one such problem, but 3 days
later, a new and equally-difficult and equally-
detrimental problem is found . . . and none of the
previous corrections fix that problem; we have to
start the diagnosis process entirely afresh.

•	 The project is soon cancelled, because the customer
has lost confidence in your ability to manage and
deliver the system. Or you are fired, and someone
else is given a chance to finish the project. Neither of
these outcomes is good!iii

How did this happen? My conclusion is that the team did not
measure the right things about the design (specifically, they tried
to assess the progress of their design through the use of
management metrics, rather than through the use of technical
metrics), and therefore, did not think about the right things in
the course of their design. As a result, they did not actually know
if their design was going to work or not, and not surprisingly, did
not create a suitable, credible, and effective design.

How do you avoid such a situation? Through (a) paying
attention to the system’s dynamic behavior in the design,
especially the part that above I called “preventing the dynamic
behavior that you do not want”, (b) the creation of good technical
measures for assessing the design, and most especially, for
assessing the dynamic behavior of the design, (c) creating a
work-plan that addresses the difficult portions of the design
early in the project, rather than doing just the easy parts first, (d)
creating a strong risk-management process, and (f) employing
good techniques for monitoring the progress of your project
(one that forces a periodic and rigorous assessment of the
technical characteristics of the design). As I stated above, I have
found that most engineering projects that fail do so because
they have bad designs; the projects had bad designs in large part
because they did not do these things well.

At the center of improved practice, therefore, are three
techniques:

•	 Techniques to create a design that adequately
accounts for the dynamic behavior of the final system,
both in the positive aspect (“design to implement the
dynamic behavior that your want”), and in the
negative aspect (“design to avoid and prevent the
dynamic behavior that you do not want”).

•	 Techniques for credibly predicting the performance,
capacity, and other aspects of the resulting design.

•	 Technical metrics that will allow for a credible
assessment of the progress of the design.

I address each of these briefly in the sections that follow.

iii	 There is a bit of engineering folklore called the “90/90 rule of project
management”, which says that “The first 90% of the project’s work
accounts for the first 90% of the project’s schedule. The remaining
10% of the project’s work accounts for the next 90% of the project’s
schedule.”. These paragraphs explain why this happens!

Techniques to create a design that adequately accounts
for the dynamic behavior of the final system

I have previously written about my prescription for this
aspect problem: the systems architecture skeleton (SAS)
methodology. In the next section, I summarize that
methodology, and in the section after that, I get to the key
point of this paper: how one can be better at implementing
the SAS approach through the use of strong metrics and
indicators that help one understand when the software
design is complete.

The SAS methodology has deep roots; an early formulation
was made by Walker Royce [9] in the mid 1980’siv, and shortly
thereafter implemented by a team he led that included Peter
Blankenship, Chase Dane, and Ben Willis. It was then extended
to operate over multiple heterogeneous computer processors
around 1988 by David Bixlerv. I built a complete engineering
and management methodology around these techniques in
the early 1990s [described by Siegel [7,10]], and subsequently
applied that methodology to more than a dozen major
system-development programs.

The original motivation for the SAS was the observation
that many system development programs (such as decision-
support systems, combat aircraft, business-automation
systems, and many others) routinely experience significant
cost and schedule over-runs in their software-development
portion. Not only does the program incur the cost impact of
these over-runs, but if – as has often been the case – the
software schedule extends enough that the software becomes
the pacing item on the program’s critical path, very significant
addition cost impact can be incurred due to the delays
imposed by software onto other activities (this effect is
sometimes called “the marching army”).

Therefore, one of the principal goals of the entire program
design and management effort is to create software estimates
for both cost and schedule that are credible, and can be met.
To accomplish this, I have conducted analyses aimed at
understanding the root-causes of the software cost and
schedule over-runs on previous development programs.
Through such analyses, I have identified the following as the
principal root-cause of these problems: The design fails
properly to control the “dynamic” behavior of the system
(e.g., control-flow, signaling, timing, capacity, race-conditions,
etc.). Standard systems engineering and software-
development processes tend to stress the “static” aspects of
the design (e.g., algorithms, ICDs, etc.), but our case-studies
(described below) show that it is the dynamic, rather than the
static, aspects of the design that are generally in fact the
source of these significant cost and schedule over-runs in the
software portion of the program.

iv	 Described in his 1998 book, cited above as (Royce 1998); the
particular implementation that this team did was called “network
architecture services” (NAS), and later somewhat generalized to
“universal network architecture services (UNAS).

v	 David coined the term hIPC (heterogeneous inter-process
communications) for this implementation, and it has appeared in
various places in the literature under that name.

International Journal of Aeronautics and Aerospace Engineering

14Int J Aeronaut Aerosp Eng.
ISSN: 2643-8224

Volume 1 • Issue 1 • 1000103

This root-cause have been validated not only by the case-
studies of previous actual programs (such as Royce [9]), but
also by academic studies (such as Siegel [7]). Having achieved
an understanding of the root-cause, I developed a “design-
based technique” that is explicitly intended to mitigate these
two root-causes. Finally, I have now had the opportunity to
implement a number of real system-development programs
using this design-based technique, and have achieved
predictable cost and schedule software deliveries. This
combination of case-study results, root-cause analyses,
academic studies, and program results using these particular
mitigations provides confidence that the assessment of the
root-causes of previous software-development program
causes is correct, and that our mitigation methods have
proven effective.

The following is offered as an example of the confirmatory
evidence available: a study examined six actual large-scale
software-intensive, real-time system development programs.
The figure 3, below, depicts both a measure of quality (latent
defect rate, expressed as defects above a certain severity level
discovered after fielding per month per 1,000,000 SLOCs),
and a measure of development-program cost performance
(cost of the software at development-program completion,
expressed as a percentage of the original bid cost). As can be
seen, the six programs show a marked “clumping” into two
distinct groups. Three programs show low latent defect rates,
and the software for these programs also were all completed
within 3% of their original bid cost (average: completed for
98% of their original bid cost). These are the programs that
incorporated the approaches (to be described below)
intended to mitigate the two root-causes listed above. On the
same graph, three other programs show high latent defect
rates, and it is also the case that the software for these
programs all required at least 175% of their initial bid cost to
complete (average: ~200% of their original bid cost); these
were programs that were similar in complexity, scope, and
problem domain to the three successful programs, but were
executed without the mitigation measures. The result is that
the mitigating measures both improved quality, and also
improved the program’s cost performance, that is, they
reduced the variance between the original cost estimate and
the cost at completion.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11

Project YYYY period II

Project AAAA

Project BBBB

Project YYYY period I

Project YYYY period IIII

Project ZZZZ

Did not use the
design-based

technique

Did use the
design-based

technique

De
ns

ity
 –

op
en

ed
 th

is
m

on
th

 /
1M

 S
LO

C

Month of the project period

These 3 projects ended
up costing about 200%

of their original cost
estimate

These 3 projects ended
up costing about 98%
of their original cost

estimate

Figure 3. The design-based technique mitigates the risk of cost and
schedule over-runs in the software development, and also results in

higher-quality software.

The business case: Although it clearly cost money to implement
the mitigating measures we have developed, it is clear from

the above data (and also from the other data are available)
that the cost of such implementation is more than recovered
through being able to credibly complete the program’s
software-development effort within the original cost estimate
(and, not shown in the figure, the programs were able to
complete within the bounds of their original schedule
estimates).

In summary, using this “design-based technique to
control unplanned dynamic behavior in complex software-
intensive systems both (a) improved quality (~6x improvement
in latent defect rate is depicted) and (b) decreased the
achieved development cost by about 2x, and allowed the
programs to complete both within their original cost estimate
and within their original schedule allocation.

Root causes: The following provides a more detailed description
of the two root-causes.

Recall that above we identified that the first of the two
identified root causes was problems arising from inadequacies
of the design to control properly the “dynamic” behavior
of the system (e.g., control-flow, signaling, timing, capacity,
race-conditions, etc.). For example, the design of the software
might be such that control signals and the data to which they
refer can get out of synchronization. Or activities might get
out of their planned sequence, violating implied requirements
for processing validity. Or queuing might build up in
unexpected ways, causing radical decreases in processing
capacity and/or significant increases in critical port-to-port
timing threads. Or off-nominal data conditions in ways not
foreseen can cause software control to get “lost”, causing
crashes and resulting in low software mean-time-between
failure. All of these effects are routinely observed in actual
system development programs that incorporate large
amounts of software. The software business has, in fact,
created an entire vocabulary of terms that describe such
problems with this “unplanned dynamic behavior”, terms
such a “dead-lock”, “race condition”, and so forth; the
existence of these terms is an indicator of the pervasiveness
of these problems in large software-intensive systems.

Detailed investigation of thousands of actual software
problem-reports on real systems (Siegel) [7] has in fact
validated my hypothesis that adverse or uncontrolled dynamic
behavior – I use the term “unplanned dynamic behavior” – is
the actual root-cause.

Furthermore, it can be shown that the effects resulting
from such unplanned dynamic behavior can be highly non-
linear, that is, seemingly small errors can cause huge
degradations in the performance and quality of the system;
this is an important indicator that we have identified the
actual root-cause of the problems.

Consider a simple example: a disk drive operates by
having a metal disk coated with a storage medium spinning at
a planned, constant rate. The surface of the disk is organized
as concentric rings of storage medium, each called a track,
which are partitioned into angular sectors of data, with control
information placed in between each sector. If the design goal

International Journal of Aeronautics and Aerospace Engineering

15Int J Aeronaut Aerosp Eng.
ISSN: 2643-8224

Volume 1 • Issue 1 • 1000103

is to read all of the data on a track in a single revolution of the
physical disk, there is a clear timing budget for performing
the necessary data transfer and processing for each sector,
derived from the rate of revolution of the disk and the angular
size of the sector and inter-sector control data. If the process
to read and process the data from sector 1 takes even a small
amount longer than this timing budget, the system will not be
ready to start reading the data from sector 2 when the head
is over the appropriate location, and the disk will have to be
allowed to spin all the way around again before the data from
sector 2 can start to be read and processed. As a result, to
read the data from sector 1 and sector 2 would take much
longer than budgeted, because the time for the platter to spin
all the way around intervenes between the two sector reads;
if there are 64 sectors per track, it will take 64 revolutions to
read the track, rather than the design goal of reading the
track in a single revolution, and hence, it will take 64 times
longer than planned to read a track of data. The result is a
highly non-linear degradation of performance from the
expected level, due to what could be a relatively minor
overage – literally, a few microseconds – in a timing budget.

This potential for extreme non-linearity in degradation of
performance due to an unexpected dynamic in system
behavior, even a minor such variation, is what makes the
management of system dynamic behavior (and the avoidance
of unplanned dynamic behavior) such a fruitful one for system
development. The undesirable behavior could manifest itself
as timing/performance/capacity degradation, as in our simple
example, or as reliability/mean-time-between-failure degradation,
or in some other fashion. Often, of course, the causal
relationships are far more complex and subtle (and hence,
harder to find) than in our simple disk-drive example.

Problems such as these tend to show up only late in a
conventional integration cycle (since they involve the
interaction among system components, the behavior does
not appear when the components are being tested alone; it
only appears as the integration stage nears completion), and
also can be very difficult to find and correct, and worse,
attempts at correction (since they involve changes to those
software elements that are controlling the complex dynamic
behavior of the system) can often result in introducing other
errors, e.g., “one step forward, two steps backwards”, and
therefore, the cost and schedule to correct such problems can
be difficult to predict.

There are two additional ways in which this effect can become
non-linear, that is, incidents that appear relatively minor can
result in significant increases to program cost and schedule:

•	 “Positive feedback loops” of increasing problems:
e.g., problems found (including the problems in
controlling system dynamic behavior) causes patches
and modifications to be required to one portion of
the code ... which “ripple” into other portions of the
code ... which cause more software development to
be undertaken than planned, and more modification
to be undertaken than planned. Each additional
unplanned modification introduces a new possibility

for somehow “breaking” yet another portion of the
design, and the cycle repeats.

•	 Software development gets onto the program critical
path, and therefore causes adverse cost implications
across the entire program, not just in the software-
development effort. This is so common that a joke –
the “90/90 rule of software development”, cited
above – has been created to memorialize it! This is a
prominent effect: because problems such as those
that we are considering arise in the integration phase,
it is often the case that schedule delays that arise only
this late in the program cannot be made up, and late
delivery of the software impacts other, often even
more expensive, elements of the program that cannot
be completed and tested without the software (e.g.,
flight testing).

Description of the Method
In order properly to control the dynamic behavior of the

system, I have employed a set of design and process
techniques that provide guidance for correct implementation
of the SAS; these comprise what I term a “technology of
integration”, a set of technical approaches that focus on
exactly this aspect of software-intensive-system risk, with the
goal of mitigating exactly these risks; specific techniques
include what we call our “software backplane” and our “systems
architecture skeleton”. This approach was invented for a U.S.
government program (the Cheyenne Mountain missile
warning system), and has a long list of other program
successes (with many different customers, military and
civilian) on large, complex, real-time systems.

The key characteristics of this methodology to implement the
SAS are as follows:

•	 Connection-oriented definition of work-flow through
the system, e.g., defines the dynamic behavior that
we want in the system.

•	 Use of a “white-list” methodology for control of
system behavior: only those actions, sequences, and
players that are registered in advance of an actual
instance of execution are allowed; all other attempts
or requests for execution are denied. The method
does allow for the potential of dynamic updating of
these registered and allowed events.

•	 Separation of the work-flow management mechanism
from the functional software, so that it can be
implemented and managed by experts in that field

•	 Use of the data signals as the actual control signals,
thereby eliminating the potential for data and control
signals to become out of synchronicity with each
other

•	 Use of a “white-list” methodology that excludes and
prevents other sorts of unplanned dynamic behavior

Having provided evidence that unplanned dynamic behavior is
the root cause of many of the significant software development

International Journal of Aeronautics and Aerospace Engineering

16Int J Aeronaut Aerosp Eng.
ISSN: 2643-8224

Volume 1 • Issue 1 • 1000103

problems that are seen in so many programs, my proposal
therefore is to establish a methodology that aims to ensure
that the design adequately controls such unplanned dynamic
behavior before we enter the implementation phase. The
following are some of key steps in this methodology:

•	 Separate the implementation of the control structure
from the implementation of the system’s functionality.
My personal practice often is to do this through the
use of middleware that is responsible for implementing
the system’s control structure (usually through
dispatch and control of mission threads), and for
preventing any other combination of stimuli and
processing from taking place; there are of course
other means to the same result. In the middleware-
based approach, one can enforce compliance by
implementing this middleware in software modules
separate from those that implement the system’s
functionality, and through the use of code auditors
that ensure that there are no coding constructs that
attempt to implement control constructs (e.g.,
rendezvous and synchronization, dispatch, etc.) in the
software modules outside of the middleware.

•	 Ensure that the control structure is inherently robust.
One technique that we often use, for example, is to
avoid the use of separate signals or channels for data
and control; having those separate allows the
possibility that they will get out of synchronization.
Instead, we tend to prefer designs where the arrival
of a data packet is the control signal.

•	 Of critical importance is incorporating features into
the control structure beyond just those that are
intended to implement the dynamic behavior you
want; you must also include design features to
prevent the dynamic behavior you do not want!
We often accomplish this latter point through a
white-listing methodology, where behavior (threads,
connections, service calls, etc.) is allowed only if it is
on a pre-defined list.

•	 Identify every potential stimulus that will commence
processing of some sort within your system; identify
every independently-schedulable software entity in
the system; use those independently-schedulable
entities to define explicitly the mission threads you wish
to have within the system, each mapped to their stimuli
(time triggered, data triggered, user-action triggered,
etc.). Define how these interactions are mediated and
enforced: e.g., the control structure used to start and
control processing within the system. Define the timing
budgets for each mission thread (and for each step
along each mission thread), and how those are
monitored and enforced. Then program the middleware
to control the implementation of exactly those threads
and relationships, disallowing any attempt to execute
other threads, combinations, or sequences. This is in
effect a “white-listing” methodology. I find it revealing
that no software or systems engineering text that I have

consulted ever talked about the concept of the
independently-scheduleable entities within a system;
but those are in effect the “moving parts” of your system
– how could one sensibly proceed without such an
explicit definition?

•	 Since the design and implementation of the control
structure is completely separate from the functional
and algorithmic aspects of the system, it can be
implemented even before those other elements are
available, using a stimulator to create the external
stimuli and message load to the system in a realistic
fashion; one can in essence run the system’s dynamic
skeleton at full load long before the mission
applications are available. This creates schedule time
– a project manager’s most precious resource – to
analyze the dynamic behavior of the system (using
technical metrics such as port-to-port timing,
processor loading, and so forth), allowing one to
isolate anomalies, and to correct them. Since this can
be done without the large volume of mission
applications software being present (at the beginning
of the process, those can be represented by stubs), it
is easier to “see” the dynamic behavior, since it is not
masked by the existence of all of those mission
applications. This is the “skeleton” portion of the
phrase “systems architecture skeleton”. Integration
can proceed then by removing selected stubs and
replacing them with real modules as they become
available. One can also see why this approach reduces
the risk of re-using prior software; one can control
the introduction of such re-used modules, doing
them one-by-one, and seeing places where these re-
used modules disrupt, violate, or tend to “fight” the
desired control structure, making it easier to adapt
those re-used modules to the new system.

•	 Doing the above also creates a very significant
management opportunity: to assign all of the control
structure design and implementation for a system to
a small yet skilled team that is implementing the
middleware. Correct design and implementation of
complex software controls is a rare skill, and spreading
such responsibility across a large portion of a team
has proven to be a poor management practice. I have
written about this in Siegel [7].

For completeness, the following assumptions and limitations
of the system architecture skeleton (SAS) methodology are
provided:

•	 The SAS methodology, of course, assumes that it is in
fact possible to separate the implementation of the
control structure of a system from the implementation
of the algorithms and other functionality of a system.
This has proven to be the case for a variety of types of
systems: military command-and-control, industrial
process control, decision-support, and others. But we
do not exclude the possibility that there are systems
for which this assumption is not valid, or not practical.

International Journal of Aeronautics and Aerospace Engineering

17Int J Aeronaut Aerosp Eng.
ISSN: 2643-8224

Volume 1 • Issue 1 • 1000103

•	 The “white-list” approach that is inherent in the SAS
does not allow for general use of software objects by
any and all requestors. Such an “open” execution
model is fashionable in some industries and
application domains; the SAS – which limits or
prevents such general use –is not likely to be a
satisfactory design solution for designers for whom
such general use of software objects is deemed
necessary or desirable.

Interestingly, we have found that this approach addresses
both the problem of unplanned dynamic behavior, but also
addresses the problem of not achieving planned software re-
use rates, as our analysis has indicated that misunderstanding
the dynamic interactions among those re-used and new
software elements is the often the root cause of failing to
achieve the planned level of software re-use.

Techniques for credibly predicting the performance,
capacity, and other aspects of the resulting design

When we can, we ought to measure actual performance
of our system; this process is often called benchmarking. But
of course, we need to make predictions about achieved
system performance before we have completed the system.
For this purpose, we use models and prototypes.

Models and prototypes are often nested or chained. An
example of such nesting might be:

•	 A physics model of radio-frequency propagation
feeds . . .

•	 A model of an antenna, which feeds . . .
•	 A model of the antenna-mast height, which feeds . . .
•	 A model of the received signal quality, which feeds . . .
•	 A model of successful packet completion rate, which

feeds . . .
•	 A model of message completion delay (average and

variance), which feeds . . .
•	 A model of end-to-end completion time and accuracy

for a specific capability, which feeds . . .
•	 A measure of some system operational performance

measure
There are, however, many different ways to interconnect

these models. Sometimes, they are all put together into a
model-of-models, with fully automated interactions between
each model. Other times, they are run separately, but the
outputs from one are automatically fed into the next model in
the chain (these are usually called federated models). Other
times, the models are completely disjoint, and the outputs
from one are manually transferred into the next model in the
chain.

It is my experience that it is important that each model be
maintained and operated by its actual creator; that creator is
the expert who knows the limits of credibility for their own
model better than anyone else, and having them maintain
and operate that model, in turn, contributes to achieving
better and more credible predictions. This motivates me

usually to prefer the use of separate models with manual
transfer of data! That sounds old-fashioned, but better
accuracy and credibility in my view is more valuable than
automated interconnection.

We use the models to analyze our system and its
candidate designs; that is, how well does each of our candidate
designs perform. Since we are concerned with whether it
meets the needs of the users, the model must finally reach the
level of being able to make predictions about the operational
performance measures, not just about the technical
performance measures. This is a common failing of system
models; many are designed only to make technical predictions.

Of course, the system architecture skeleton described in
the previous section provides a new and important way to
predict system performance, too: we implement the actual
system architecture skeleton early in the project, we populate
it with models or prototypes of each independently-
schedulable entity, and this creates predictions based on
realistic system dynamic behavior, since the system
architecture skeleton is the mechanism for implementing and
controlling the system’s dynamic behavior.

Technical metrics that will allow for a credible assessment
of the progress of the design

“Measuring progress on the design” is, in my view, of
significantly more importance than books, standards, and
training manuals generally recognize. Few texts, for example,
talk at all about “measuring design progress” (Siegel) [11]vi.

To the extent that these source documents advocates the
use of technical measures, they only advocate those that
measure the design as a “black box”–its visible performance
and capacity, for example. Seldom do they advocate technical
measures of the “goodness” of structure and form; there are
seldom “white box” measurements of the design.

I certainly advocate the use of management measures
about design progress, and the use of black-box measures of
system performance. But I have found that these are not
sufficient! I therefore also advocate the use of direct technical
measures about the internal suitability of the design. I
advocate this because this is what I have consistently seen as
the real failure mechanism in important engineering projects.

As discussed above, the need to prevent in advertent
adverse, unplanned dynamic behavior is a key success factor
in design, and also is an indication of why simpler is usually
better in design. Everyone advocates the KISS1 principle, but
what is it that you actually measure in order to achieve a
simple design? The sources seldom tell you what to measure,
in order to see if your design is simple or not. Here is my
favorite example of a tangible design parameter that you can
aspire to keep simple: the number of independently-
schedulable software entities within the mission software for a
large, complex system. I always measure this parameter when
I design or evaluate a system. One of my best systems (still in
use 30+ years later – and that is an eternity in the software

vi	 Although my forthcoming text “Engineering Project Management”,
Wiley, 2019 Siegel [11], will do so!

International Journal of Aeronautics and Aerospace Engineering

18Int J Aeronaut Aerosp Eng.
ISSN: 2643-8224

Volume 1 • Issue 1 • 1000103

business!) had only seven independently-schedulable software
entities in the mission software.

At the same time that I was building this system with seven
independently-schedulable software entities in the mission
software, the same customer had another company building a
system for a slightly different mission, but one that shared
many of the same operational conditions and constraints. That
contractor was having problems, and the customer asked me
to take a look at their work. It turned out they had no count or
list of the independently-schedulable software entities within
their system! How could they expect to control adverse dynamic
behavior? At my suggestion, they made such a list; it turned out
that they had more than 700 independently-schedulable
software entities within their system’s mission software. What
human being could understand the potential interactions and
implications of so many independently-schedulable parts in a
complex system? Their system was never fielded; it was about
100x less reliable than needed (and more than 1,000x less
reliable than my similar system).

In the end, the next system that I built for this same
customer (which had 9 independently-schedulable software
entities within the system’s mission software; I was unhappy
that we went from 7 to 9!) was eventually adopted to take
over the mission intended for the other company’s project.
The other company spent nearly $1,000,000,000.00 and yet
produced nothing useful. They failed to implement the KISS
principle, and they failed to assess the progress of their design
using any sort of white-box technical metric.

The above, although simplified from the versions
presented in the references (especially Siegel [7] and Royce
[9]), demonstrates that a set of steps can be provided, and a
set of technical items that can be instrumented, observed,
and measured, resulting in an ability to declare that in fact the
design is complete in some meaningful, tangible, and
objective fashion.

Implications and Conclusions
I spent many years of my career as the designated “fixer

of system-development programs that were in trouble”. My
insight from that experience was that lots of systems have
bad designs. Why might that be?

•	 Designs often take place in an abbreviated period of
competitive proposal selection. Once you have won,
it is psychologically hard to recognize that your
design might not be ideal. After all, it won!

•	 Fitting a design to the mixture of social and technical
constraints is hard, and we tend not to iterate enough
times, or to select the design based only on technical
criterion (“effective”), rather than both technical and
operational criteria (“effective and suitable”).

•	 We trim the design trade-space far too quickly.
People hate ambiguity, and are therefore quick to
down-select to a design that seems feasible, in order
to stop the pain of carrying a lot of true alternatives.

Whether these are the correct causes of poor designs or
not, in this paper I presented evidence from actual system
development programs that what I have termed herein
unplanned dynamic behavior is a key root cause of many
system development problems; in essence, the design is not
adequate for the task at hand.

This insight allows one to create a methodology, sequence
of steps, and technical metrics that can in fact provide far
higher assurance that one asserts that the design is done, you
are truly in a state where the implementation can proceed
without excessive risk.

In my view, the design is not done until you have accomplished
these items:

•	 Explicit definition of all of the independently-
schedulable entities within the system (and likely,
only a relatively small number of these), and a clear
plan for how they will interact to form threads.

•	 Design mechanisms to control unplanned dynamic
behavior (e.g., white-listing allowed behaviors, etc.)

These (and the technical metrics derived from them, such
as port-to-port timing variance, etc.) form the key indicators
of a mature, complete design.

Evidence was presented that using this software design
approach, one can consistently complete complex software
and software-intensive system development efforts, meeting
cost, schedule, and performance parameters.

References
1.	 Boehm BW. Software Engineering Economics. Prentice Hall; 1981.

2.	 Glass RL. ComputingFailure.com. Prentice Hall; 2001

3.	 Flowers S. Software Failure: Management Failure. 1996.

4.	 Northrop G. Northrop Grumman Systems Engineering Handbook. CTM-
101, Tenets of program success. 2010.

5.	 Army. Landwarnet. A report by the U.S. Army Science Board. 2007.

6.	 Symonds M. 15 Causes of Project Failure. 2011.

7.	 Siegel NG. Organizing Complex Projects Around Critical Skills, and the
Mitigation of Risks Arising from System Dynamic Behavior. USC, 2011.

8.	 Siegel NG. Organizing Projects around the Mitigation of Risks Arising
from System Dynamic Behavior. International Journal of Software
Informatics. 2011; 5(3).

9.	 Royce W. Software Project Management: A unified framework. Addison
Wesley. 1998.

10.	 Siegel N. A Manager’s Perspective on the Benefits of Ada. TRW Data
Technologies Division Technical Notes Series. 1994.

11.	 Siegel NG. Engineering Project Management. Wiley Publishers. 2019.

https://books.google.co.in/books/about/Software_Engineering_Economics.html?id=mpZQAAAAMAAJ&redir_esc=y
https://books.google.co.in/books/about/ComputingFailure_com.html?id=f3YeAQAAIAAJ&redir_esc=y
https://books.google.co.in/books?id=yyYiAQAAIAAJ&q=Software+Failure:+Management+Failure&dq=Software+Failure:+Management+Failure&hl=en&sa=X&ved=0ahUKEwjQhaTZt6HgAhXEfisKHVu9CDgQ6AEIKDAA
https://www.projectsmart.co.uk/15-causes-of-project-failure.php
https://books.google.co.in/books?id=O3kZAQAAIAAJ&q=Software+Project+Management,+1998&dq=Software+Project+Management,+1998&hl=en&sa=X&ved=0ahUKEwjIsvyJh6TgAhWQXSsKHWZgDYMQ6AEIKjAA

	Research Article
	When is the Design Complete?
	Abstract
	Keywords

	Background
	Figure 1
	Figure 2

	My Experiences and My Findings
	Techniques to create a design that adequately accounts for the dynamic behavior of the final system
	Figure 3
	The business case
	Root causes:

	Description of the Method
	Techniques for credibly predicting the performance, capacity, and other aspects of the resulting des
	Technical metrics that will allow for a credible assessment of the progress of the design

	Implications and Conclusions
	References

