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Abstract
Almost every software-development and software-intensive system-development 

methodology calls for the design to reach some level of maturity before the team moves 
into software and system implementation. Yet data from many sources indicate that a large 
percentage of software and system-development programs encounter significant difficulties. 
Data from my own work fixing such problem programs indicates that the major recurring 
theme across such problem programs is that the design was inadequate for the task at 
hand; this, of course, should have been detected during the design phase, before the 
program moved on to implementation, integration, and test. In this paper, I examine 
indications from a number of real programs to determine why the design is so often 
inadequate; one of the key findings is that our standard methods, processes, indicators, and 
metrics for determining if the design is complete are seriously flawed. A proposal for better 
design-completion indicators is provided, and the implications for practice discussed.

Keywords: Software Development Practices; Software Development Metrics; Software 
Development Procedures; Software Design; Software Management; System Architecture 
Skeleton; System Design; System Development; Design Metrics; System-Development 
Metrics; Independently-Schedulable Software Entities; Software-intensive systems; 
Software-intensive system development.

Background
The world of software and software-intensive systems development is full of metrics, 

covering many different topics: estimation of time and effort before the development 
process starts (a field pioneered by Boehm [1]), indicators of software quality and complexityi, 
and so forth.

One would expect, therefore, for there also to be a robust set of metrics for 
measuring the technical progress of a design, and how one could use such metrics to 
determine when a design is complete.

There is, in fact, quite a lot of guidance for how to conduct the design phase of a 
development programs: dozens of checklists, suggested representations, suggested 
reviews, and so forth. Included in this guidance for the design phase are activities 
designed to assess progress. However, most of this guidance (whether from INCOSE, 
the IEEE, corporate processes, government standards documents, etc.) for assessing 
progress is based on the use of management indicators to evaluate progress through 
the design phase, things like “create these representations”, “hold these meetings”, 
“conduct these reviews”.

But the design is not solely a management activity; at heart, design is a technical activity! 
One can therefore ask where are the technical guidelines, methods, metrics, and indicators 
that tell us when the design is mature enough to as to allow a development team to know 

i	 Such as http://searchsoftwarequality.techtarget.com/guides/Quality-metrics-A-guide-to-measuring-
software-quality, but many others, as well.
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that they are ready to move into an implementation phase, and 
can reasonably have confidence that the multiple people building 
the individual components of the software will create entities 
that, when brought together and integrated, will perform with 
the functionality, capacity, reliability, and other characteristics 
that are appropriate for this software program or system?

We all are aware that software and system development is 
a difficult business; many, many development programs fail. 
For example, Glass [2] is one of many sources that report more 
than half of all major software development programs fail.

In this paper, I raise the hypothesis that the root cause of 
many of these software and software-intensive-system 
development failures (“failures” in the sense of having significantly 
late deliveries, inadequate capabilities, significant cost overruns, 
cancellation, rejection by the users, and often, some combination 
of all of these factors) are due to inadequate design, especially, 
inadequate software design. I raise the related hypothesis that 
one of the causes of these inadequate software designs is that 
we have few ways to tell if the software design is actually 
complete; if the design is in fact not yet complete when we enter 
the implementation phase, what happens is that the design is 
completed informally by dozens (or even hundreds) of separate 
programmers, working most likely without effective design 
coordination. This is sure to lead to design inconsistencies that 
show up during integration as those hard-to-find and hard-to-
solve problems that drive programs into significant cost and 
schedule overages.

The literature has examined the question of why software 
development programs fail. A typical view is as follows (Figure 1):

Figure 1. Data from the Standish Group (via Barry Boehm [1]) 
regarding their view of the root-cause of failures in software-

development projects.

This is perhaps not as illuminating as it might seem, with 
the largest category by far being “other”. If there is a trend or 
lesson in these data, it is that the authors believe the 
problem probably lies in the requirements process; many 
of the items highlighted in yellow (highlighting in Boehm’s 
original) pertain in one way or another to requirements. The 
literature even has a favorite phrase: “requirements creep”, 
the notion that programs get into trouble because we let the 
user keep adding new requirements to the system 
specification, even after we have moved past the initial 

requirements phase. This is also a favorite conclusion of 
textbooks (such as Flowers [3]), university courses, corporate 
guidance documents (such as Northrop [4]), and Government 
lessons-learned reports (such as Army [5]).

The data in Figure 1 dates from 1995, but more recent 
data provides similar conclusions; for example, Symonds [6] 
provides the following list of her 15 most-common causes of 
system-development project failure (Figure 2).

Figure 2. Data from Symonds: her list of the most-common causes 
of system-development project failure.

Items 1, 3, 10, and 11 on her list all relate to requirements. 
She rates items 1, 2, and 3 as the most important; note that 2 of 
these 3 explicitly relate to requirements: requirements are a 
major portion of the definition of project scope, and the place 
where we identify most of the key assumptions, including such 
items as data and components to be provided by the customer.

In summary, according to the literature, the fairly consistent 
“villain” of the failed-software-development (and, therefore, also 
of the failed software-intensive system development) story is 
requirements creep. 

I find this to be a suspect conclusion, because it does not 
account for the observed highly non-linear outcomes. For 
example, a program team which had been predicting for 
many months that they were going to finish the project within 
its planned budget might suddenly make a new prediction 
that their system will cost five times as much money to build 
as was in its original estimate. They might attribute this 
increase in cost to “requirements creep”.

Unfortunately, this is not a rare occurrence; not only do we 
frequently see such very large adverse changes to the predicted 
development cost of a system (and also, to the development 
schedule), we also all-too-often see such adverse changes in 
the predictions to key performance factors, e.g., systems that 
are now predicted to perform 100 times slower than promised, 
be 100 times less reliable than promised, and so forthii.

ii	 I don’t cite development programs by name here (although I could!), 
in the interest of not embarrassing people. But anyone familiar with 
the literature will be able to provide their own examples.
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I find the conclusion that the root-cause of these adverse 
changes is requirements creep to be suspect, because my 
experience is that requirements creep is fundamentally a linear 
factor: adding 10% additional requirements to a program 
might increase cost by somewhat more than 10%–some 
requirements are harder to implement than others–but because 
requirements are generally decomposed into a large number 
of “small” statements, my experience is that the effect over a 
large number of changes tends to be approximately linear.

The change that we find–as noted above–to the prediction 
for cost (and usually, schedule), however, is often highly non-
linear: the project has in fact added 10% to the number of 
requirements, but the predictions about cost and schedule 
have increased 500%, and the predicted system performance 
capacity has degraded 10,000%, and so forth.

The true root cause ought to be one that inherently can 
explain such non-linear changes; requirements creep does 
not offer that explanation.

I spent several years of my career as a sort of a designated 
“fixer of problem projects” at a large aerospace company. 
Most of these projects displayed predictions similar to those 
cited above: a few percent of changed requirements, but 
many multiples of increase in development cost and schedule, 
and even more radical decreases in predicted (or measured) 
system performance.

These assignments allowed me to dig deep into the actual 
root cause that caused the adverse changes. What I saw as 
the consistent root problem was quite different than 
requirements creep; my findings were that in some 
fundamental sense, the design was almost always inadequate, 
and therefore the implementation effort was doomed. I also 
found a consistent root cause in the designs of these systems 
that could explain the non-linear behavior of the predictions.

My Experiences and My Findings
During my career, I have found that, by count, the largest 

portion of a typical system requirements specification are the 
functional requirements; e.g., “use this algorithm”, “in response 
to this action, display this information”, and so forth. Since these 
functional requirements form the largest portion of the 
requirements specification (usually, well over 95% of the 
requirements, by count), they receive the most attention from 
the design and test teams, and in general, the resulting designs 
are effective at implementing those requirements. These design 
elements share one important characteristic: they can be 
designed and analyzed through essentially static representations, 
such as functional decomposition, implementation hierarchies, 
flow-charts, algorithm development, algorithm modeling, and 
so forth. 

The remaining (and generally, by count, quite small) 
portion of the requirements specification deal with what are 
sometimes called the quality characteristics of the system: 
performance rates, capacities, timing, reliability, and so forth. 
These design elements share one important characteristic, 
too: they can only be designed and analyzed through 

representations of the dynamic behavior of the system. My 
conclusion from my experience fixing these problem programs 
was that our systems are too often burdened by an inadequate 
design for the dynamic behavior of the system. 

The design for controlling the dynamic behavior of a 
system needs to come in two parts: (a) the mechanisms for 
implementing the dynamic behavior we want (e.g., threads, 
inter-process communications, signals, rendezvous and 
synchronization, and so forth), and (b) the mechanisms for 
excluding/prohibiting the dynamic behavior that we do not 
want. My findings (Siegel [7,8]) are that designers sometimes 
do an adequate job on the first of these items, but seldom do 
an adequate job on the second. This lack turned out to be 
the root cause for almost every problem program I have been 
called upon to fix over the course of my career, and is therefore 
my candidate for the true (but often, unnoticed) root cause of 
many system-development failures. I have coined the term 
“unplanned dynamic behavior” to denote the actions that 
take place within a system that cause highly non-linear 
degradations in capacity (100x is not uncommon), reliability 
(1,000x is not uncommon), port-to-port timing, and so forth 
(Siegel) [7].

This leads to the following typical failure scenario for an 
engineering project:

•	 During the requirements, design, and implementation 
stages, all of the measurements indicate that the 
project is completely on time and on budget. All is well.

•	 Then, the project enters the integration stage.
•	 During the integration phase, multiple pieces are put 

together into larger and larger sub-assemblies, and 
these sub-assemblies are executed. It is at this point 
that major problems start to occur: things that appeared 
to work well in the individual parts start showing signs 
of very significant problems. The system crashes every 
ten minutes; the system processes data 100 times 
slower than it is intended to do so; and so forth.

•	 The team laboriously tracks down these issues one-by-
one. Each problem takes far longer to find and fix than 
thought it would; as a result, our predicted project end-
date starts “slipping to the right” as fast as the calendar 
progresses, or even faster. Each problem turns out to 
be a problem of unplanned dynamic behavior: not a 
problem with the individual parts, but instead with the 
way that the parts interact. Typical problems are that, at 
times, processing steps accidently occur out of their 
planned sequence; processing steps take longer than 
planned, and timing margins are missed; processing 
steps queue up unexpectedly, causing conditions akin 
to turbulence on communications paths, which in turn 
degrades performance and causes delays in timing; off-
nominal data (outliers) or unexpected actions by the 
users cause the system to behave badly.

•	 The team works hard to fix each issue. But there 
seems to be no end to the occurrence of such 
problems; fixing one does not prevent new examples 
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of such bad behavior from occurring. No prediction 
about progress towards the completion of our project 
turns out to be justified; the predicted end-date just 
keeps slipping. And people get discouraged: they 
work very hard and fix one such problem, but 3 days 
later, a new and equally-difficult and equally-
detrimental problem is found . . . and none of the 
previous corrections fix that problem; we have to 
start the diagnosis process entirely afresh.

•	 The project is soon cancelled, because the customer 
has lost confidence in your ability to manage and 
deliver the system. Or you are fired, and someone 
else is given a chance to finish the project. Neither of 
these outcomes is good!iii

How did this happen? My conclusion is that the team did not 
measure the right things about the design (specifically, they tried 
to assess the progress of their design through the use of 
management metrics, rather than through the use of technical 
metrics), and therefore, did not think about the right things in 
the course of their design. As a result, they did not actually know 
if their design was going to work or not, and not surprisingly, did 
not create a suitable, credible, and effective design.

How do you avoid such a situation? Through (a) paying 
attention to the system’s dynamic behavior in the design, 
especially the part that above I called “preventing the dynamic 
behavior that you do not want”, (b) the creation of good technical 
measures for assessing the design, and most especially, for 
assessing the dynamic behavior of the design, (c) creating a 
work-plan that addresses the difficult portions of the design 
early in the project, rather than doing just the easy parts first, (d) 
creating a strong risk-management process, and (f) employing 
good techniques for monitoring the progress of your project 
(one that forces a periodic and rigorous assessment of the 
technical characteristics of the design). As I stated above, I have 
found that most engineering projects that fail do so because 
they have bad designs; the projects had bad designs in large part 
because they did not do these things well.

At the center of improved practice, therefore, are three 
techniques:

•	 Techniques to create a design that adequately 
accounts for the dynamic behavior of the final system, 
both in the positive aspect (“design to implement the 
dynamic behavior that your want”), and in the 
negative aspect (“design to avoid and prevent the 
dynamic behavior that you do not want”).

•	 Techniques for credibly predicting the performance, 
capacity, and other aspects of the resulting design.

•	 Technical metrics that will allow for a credible 
assessment of the progress of the design.

I address each of these briefly in the sections that follow.

iii	 There is a bit of engineering folklore called the “90/90 rule of project 
management”, which says that “The first 90% of the project’s work 
accounts for the first 90% of the project’s schedule. The remaining 
10% of the project’s work accounts for the next 90% of the project’s 
schedule.”. These paragraphs explain why this happens!

Techniques to create a design that adequately accounts 
for the dynamic behavior of the final system

I have previously written about my prescription for this 
aspect problem: the systems architecture skeleton (SAS) 
methodology. In the next section, I summarize that 
methodology, and in the section after that, I get to the key 
point of this paper: how one can be better at implementing 
the SAS approach through the use of strong metrics and 
indicators that help one understand when the software 
design is complete.

The SAS methodology has deep roots; an early formulation 
was made by Walker Royce [9] in the mid 1980’siv, and shortly 
thereafter implemented by a team he led that included Peter 
Blankenship, Chase Dane, and Ben Willis. It was then extended 
to operate over multiple heterogeneous computer processors 
around 1988 by David Bixlerv. I built a complete engineering 
and management methodology around these techniques in 
the early 1990s [described by Siegel [7,10]], and subsequently 
applied that methodology to more than a dozen major 
system-development programs.

The original motivation for the SAS was the observation 
that many system development programs (such as decision-
support systems, combat aircraft, business-automation 
systems, and many others) routinely experience significant 
cost and schedule over-runs in their software-development 
portion. Not only does the program incur the cost impact of 
these over-runs, but if – as has often been the case – the 
software schedule extends enough that the software becomes 
the pacing item on the program’s critical path, very significant 
addition cost impact can be incurred due to the delays 
imposed by software onto other activities (this effect is 
sometimes called “the marching army”).

Therefore, one of the principal goals of the entire program 
design and management effort is to create software estimates 
for both cost and schedule that are credible, and can be met. 
To accomplish this, I have conducted analyses aimed at 
understanding the root-causes of the software cost and 
schedule over-runs on previous development programs. 
Through such analyses, I have identified the following as the 
principal root-cause of these problems: The design fails 
properly to control the “dynamic” behavior of the system 
(e.g., control-flow, signaling, timing, capacity, race-conditions, 
etc.). Standard systems engineering and software-
development processes tend to stress the “static” aspects of 
the design (e.g., algorithms, ICDs, etc.), but our case-studies 
(described below) show that it is the dynamic, rather than the 
static, aspects of the design that are generally in fact the 
source of these significant cost and schedule over-runs in the 
software portion of the program.

iv	 Described in his 1998 book, cited above as (Royce 1998); the 
particular implementation that this team did was called “network 
architecture services” (NAS), and later somewhat generalized to 
“universal network architecture services (UNAS).

v	 David coined the term hIPC (heterogeneous inter-process 
communications) for this implementation, and it has appeared in 
various places in the literature under that name.
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This root-cause have been validated not only by the case-
studies of previous actual programs (such as Royce [9]), but 
also by academic studies (such as Siegel [7]). Having achieved 
an understanding of the root-cause, I developed a “design-
based technique” that is explicitly intended to mitigate these 
two root-causes. Finally, I have now had the opportunity to 
implement a number of real system-development programs 
using this design-based technique, and have achieved 
predictable cost and schedule software deliveries. This 
combination of case-study results, root-cause analyses, 
academic studies, and program results using these particular 
mitigations provides confidence that the assessment of the 
root-causes of previous software-development program 
causes is correct, and that our mitigation methods have 
proven effective.

The following is offered as an example of the confirmatory 
evidence available: a study examined six actual large-scale 
software-intensive, real-time system development programs. 
The figure 3, below, depicts both a measure of quality (latent 
defect rate, expressed as defects above a certain severity level 
discovered after fielding per month per 1,000,000 SLOCs), 
and a measure of development-program cost performance 
(cost of the software at development-program completion, 
expressed as a percentage of the original bid cost). As can be 
seen, the six programs show a marked “clumping” into two 
distinct groups. Three programs show low latent defect rates, 
and the software for these programs also were all completed 
within 3% of their original bid cost (average: completed for 
98% of their original bid cost). These are the programs that 
incorporated the approaches (to be described below) 
intended to mitigate the two root-causes listed above. On the 
same graph, three other programs show high latent defect 
rates, and it is also the case that the software for these 
programs all required at least 175% of their initial bid cost to 
complete (average: ~200% of their original bid cost); these 
were programs that were similar in complexity, scope, and 
problem domain to the three successful programs, but were 
executed without the mitigation measures. The result is that 
the mitigating measures both improved quality, and also 
improved the program’s cost performance, that is, they 
reduced the variance between the original cost estimate and 
the cost at completion.
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Figure 3. The design-based technique mitigates the risk of cost and 
schedule over-runs in the software development, and also results in 

higher-quality software.

The business case: Although it clearly cost money to implement 
the mitigating measures we have developed, it is clear from 

the above data (and also from the other data are available) 
that the cost of such implementation is more than recovered 
through being able to credibly complete the program’s 
software-development effort within the original cost estimate 
(and, not shown in the figure, the programs were able to 
complete within the bounds of their original schedule 
estimates).

In summary, using this “design-based technique to 
control unplanned dynamic behavior in complex software-
intensive systems both (a) improved quality (~6x improvement 
in latent defect rate is depicted) and (b) decreased the 
achieved development cost by about 2x, and allowed the 
programs to complete both within their original cost estimate 
and within their original schedule allocation.

Root causes: The following provides a more detailed description 
of the two root-causes.

Recall that above we identified that the first of the two 
identified root causes was problems arising from inadequacies 
of the design to control properly the “dynamic” behavior 
of the system (e.g., control-flow, signaling, timing, capacity, 
race-conditions, etc.). For example, the design of the software 
might be such that control signals and the data to which they 
refer can get out of synchronization. Or activities might get 
out of their planned sequence, violating implied requirements 
for processing validity. Or queuing might build up in 
unexpected ways, causing radical decreases in processing 
capacity and/or significant increases in critical port-to-port 
timing threads. Or off-nominal data conditions in ways not 
foreseen can cause software control to get “lost”, causing 
crashes and resulting in low software mean-time-between 
failure. All of these effects are routinely observed in actual 
system development programs that incorporate large 
amounts of software. The software business has, in fact, 
created an entire vocabulary of terms that describe such 
problems with this “unplanned dynamic behavior”, terms 
such a “dead-lock”, “race condition”, and so forth; the 
existence of these terms is an indicator of the pervasiveness 
of these problems in large software-intensive systems.

Detailed investigation of thousands of actual software 
problem-reports on real systems (Siegel) [7] has in fact 
validated my hypothesis that adverse or uncontrolled dynamic 
behavior – I use the term “unplanned dynamic behavior” – is 
the actual root-cause.

Furthermore, it can be shown that the effects resulting 
from such unplanned dynamic behavior can be highly non-
linear, that is, seemingly small errors can cause huge 
degradations in the performance and quality of the system; 
this is an important indicator that we have identified the 
actual root-cause of the problems.

Consider a simple example: a disk drive operates by 
having a metal disk coated with a storage medium spinning at 
a planned, constant rate. The surface of the disk is organized 
as concentric rings of storage medium, each called a track, 
which are partitioned into angular sectors of data, with control 
information placed in between each sector. If the design goal 
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is to read all of the data on a track in a single revolution of the 
physical disk, there is a clear timing budget for performing 
the necessary data transfer and processing for each sector, 
derived from the rate of revolution of the disk and the angular 
size of the sector and inter-sector control data. If the process 
to read and process the data from sector 1 takes even a small 
amount longer than this timing budget, the system will not be 
ready to start reading the data from sector 2 when the head 
is over the appropriate location, and the disk will have to be 
allowed to spin all the way around again before the data from 
sector 2 can start to be read and processed. As a result, to 
read the data from sector 1 and sector 2 would take much 
longer than budgeted, because the time for the platter to spin 
all the way around intervenes between the two sector reads; 
if there are 64 sectors per track, it will take 64 revolutions to 
read the track, rather than the design goal of reading the 
track in a single revolution, and hence, it will take 64 times 
longer than planned to read a track of data. The result is a 
highly non-linear degradation of performance from the 
expected level, due to what could be a relatively minor 
overage – literally, a few microseconds – in a timing budget.

This potential for extreme non-linearity in degradation of 
performance due to an unexpected dynamic in system 
behavior, even a minor such variation, is what makes the 
management of system dynamic behavior (and the avoidance 
of unplanned dynamic behavior) such a fruitful one for system 
development. The undesirable behavior could manifest itself 
as timing/performance/capacity degradation, as in our simple 
example, or as reliability/mean-time-between-failure degradation, 
or in some other fashion. Often, of course, the causal 
relationships are far more complex and subtle (and hence, 
harder to find) than in our simple disk-drive example.

Problems such as these tend to show up only late in a 
conventional integration cycle (since they involve the 
interaction among system components, the behavior does 
not appear when the components are being tested alone; it 
only appears as the integration stage nears completion), and 
also can be very difficult to find and correct, and worse, 
attempts at correction (since they involve changes to those 
software elements that are controlling the complex dynamic 
behavior of the system) can often result in introducing other 
errors, e.g., “one step forward, two steps backwards”, and 
therefore, the cost and schedule to correct such problems can 
be difficult to predict.

There are two additional ways in which this effect can become 
non-linear, that is, incidents that appear relatively minor can 
result in significant increases to program cost and schedule:

•	 “Positive feedback loops” of increasing problems: 
e.g., problems found (including the problems in 
controlling system dynamic behavior) causes patches 
and modifications to be required to one portion of 
the code ... which “ripple” into other portions of the 
code ... which cause more software development to 
be undertaken than planned, and more modification 
to be undertaken than planned. Each additional 
unplanned modification introduces a new possibility 

for somehow “breaking” yet another portion of the 
design, and the cycle repeats.

•	 Software development gets onto the program critical 
path, and therefore causes adverse cost implications 
across the entire program, not just in the software-
development effort. This is so common that a joke – 
the “90/90 rule of software development”, cited 
above – has been created to memorialize it! This is a 
prominent effect: because problems such as those 
that we are considering arise in the integration phase, 
it is often the case that schedule delays that arise only 
this late in the program cannot be made up, and late 
delivery of the software impacts other, often even 
more expensive, elements of the program that cannot 
be completed and tested without the software (e.g., 
flight testing).

Description of the Method
In order properly to control the dynamic behavior of the 

system, I have employed a set of design and process 
techniques that provide guidance for correct implementation 
of the SAS; these comprise what I term a “technology of 
integration”, a set of technical approaches that focus on 
exactly this aspect of software-intensive-system risk, with the 
goal of mitigating exactly these risks; specific techniques 
include what we call our “software backplane” and our “systems 
architecture skeleton”. This approach was invented for a U.S. 
government program (the Cheyenne Mountain missile 
warning system), and has a long list of other program 
successes (with many different customers, military and 
civilian) on large, complex, real-time systems.

The key characteristics of this methodology to implement the 
SAS are as follows:

•	 Connection-oriented definition of work-flow through 
the system, e.g., defines the dynamic behavior that 
we want in the system.

•	 Use of a “white-list” methodology for control of 
system behavior: only those actions, sequences, and 
players that are registered in advance of an actual 
instance of execution are allowed; all other attempts 
or requests for execution are denied. The method 
does allow for the potential of dynamic updating of 
these registered and allowed events.

•	 Separation of the work-flow management mechanism 
from the functional software, so that it can be 
implemented and managed by experts in that field

•	 Use of the data signals as the actual control signals, 
thereby eliminating the potential for data and control 
signals to become out of synchronicity with each 
other

•	 Use of a “white-list” methodology that excludes and 
prevents other sorts of unplanned dynamic behavior

Having provided evidence that unplanned dynamic behavior is 
the root cause of many of the significant software development 
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problems that are seen in so many programs, my proposal 
therefore is to establish a methodology that aims to ensure 
that the design adequately controls such unplanned dynamic 
behavior before we enter the implementation phase. The 
following are some of key steps in this methodology:

•	 Separate the implementation of the control structure 
from the implementation of the system’s functionality. 
My personal practice often is to do this through the 
use of middleware that is responsible for implementing 
the system’s control structure (usually through 
dispatch and control of mission threads), and for 
preventing any other combination of stimuli and 
processing from taking place; there are of course 
other means to the same result. In the middleware-
based approach, one can enforce compliance by 
implementing this middleware in software modules 
separate from those that implement the system’s 
functionality, and through the use of code auditors 
that ensure that there are no coding constructs that 
attempt to implement control constructs (e.g., 
rendezvous and synchronization, dispatch, etc.) in the 
software modules outside of the middleware. 

•	 Ensure that the control structure is inherently robust. 
One technique that we often use, for example, is to 
avoid the use of separate signals or channels for data 
and control; having those separate allows the 
possibility that they will get out of synchronization. 
Instead, we tend to prefer designs where the arrival 
of a data packet is the control signal.

•	 Of critical importance is incorporating features into 
the control structure beyond just those that are 
intended to implement the dynamic behavior you 
want; you must also include design features to 
prevent the dynamic behavior you do not want! 
We often accomplish this latter point through a 
white-listing methodology, where behavior (threads, 
connections, service calls, etc.) is allowed only if it is 
on a pre-defined list.

•	 Identify every potential stimulus that will commence 
processing of some sort within your system; identify 
every independently-schedulable software entity in 
the system; use those independently-schedulable 
entities to define explicitly the mission threads you wish 
to have within the system, each mapped to their stimuli 
(time triggered, data triggered, user-action triggered, 
etc.). Define how these interactions are mediated and 
enforced: e.g., the control structure used to start and 
control processing within the system. Define the timing 
budgets for each mission thread (and for each step 
along each mission thread), and how those are 
monitored and enforced. Then program the middleware 
to control the implementation of exactly those threads 
and relationships, disallowing any attempt to execute 
other threads, combinations, or sequences. This is in 
effect a “white-listing” methodology. I find it revealing 
that no software or systems engineering text that I have 

consulted ever talked about the concept of the 
independently-scheduleable entities within a system; 
but those are in effect the “moving parts” of your system 
– how could one sensibly proceed without such an 
explicit definition?

•	 Since the design and implementation of the control 
structure is completely separate from the functional 
and algorithmic aspects of the system, it can be 
implemented even before those other elements are 
available, using a stimulator to create the external 
stimuli and message load to the system in a realistic 
fashion; one can in essence run the system’s dynamic 
skeleton at full load long before the mission 
applications are available. This creates schedule time 
– a project manager’s most precious resource – to 
analyze the dynamic behavior of the system (using 
technical metrics such as port-to-port timing, 
processor loading, and so forth), allowing one to 
isolate anomalies, and to correct them. Since this can 
be done without the large volume of mission 
applications software being present (at the beginning 
of the process, those can be represented by stubs), it 
is easier to “see” the dynamic behavior, since it is not 
masked by the existence of all of those mission 
applications. This is the “skeleton” portion of the 
phrase “systems architecture skeleton”. Integration 
can proceed then by removing selected stubs and 
replacing them with real modules as they become 
available. One can also see why this approach reduces 
the risk of re-using prior software; one can control 
the introduction of such re-used modules, doing 
them one-by-one, and seeing places where these re-
used modules disrupt, violate, or tend to “fight” the 
desired control structure, making it easier to adapt 
those re-used modules to the new system.

•	 Doing the above also creates a very significant 
management opportunity: to assign all of the control 
structure design and implementation for a system to 
a small yet skilled team that is implementing the 
middleware. Correct design and implementation of 
complex software controls is a rare skill, and spreading 
such responsibility across a large portion of a team 
has proven to be a poor management practice. I have 
written about this in Siegel [7].

For completeness, the following assumptions and limitations 
of the system architecture skeleton (SAS) methodology are 
provided: 

•	 The SAS methodology, of course, assumes that it is in 
fact possible to separate the implementation of the 
control structure of a system from the implementation 
of the algorithms and other functionality of a system. 
This has proven to be the case for a variety of types of 
systems: military command-and-control, industrial 
process control, decision-support, and others. But we 
do not exclude the possibility that there are systems 
for which this assumption is not valid, or not practical.
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•	 The “white-list” approach that is inherent in the SAS 
does not allow for general use of software objects by 
any and all requestors. Such an “open” execution 
model is fashionable in some industries and 
application domains; the SAS – which limits or 
prevents such general use –is not likely to be a 
satisfactory design solution for designers for whom 
such general use of software objects is deemed 
necessary or desirable.

Interestingly, we have found that this approach addresses 
both the problem of unplanned dynamic behavior, but also 
addresses the problem of not achieving planned software re-
use rates, as our analysis has indicated that misunderstanding 
the dynamic interactions among those re-used and new 
software elements is the often the root cause of failing to 
achieve the planned level of software re-use.

Techniques for credibly predicting the performance, 
capacity, and other aspects of the resulting design

When we can, we ought to measure actual performance 
of our system; this process is often called benchmarking. But 
of course, we need to make predictions about achieved 
system performance before we have completed the system. 
For this purpose, we use models and prototypes.

Models and prototypes are often nested or chained. An 
example of such nesting might be:

•	 A physics model of radio-frequency propagation 
feeds . . .

•	 A model of an antenna, which feeds . . . 
•	 A model of the antenna-mast height, which feeds . . . 
•	 A model of the received signal quality, which feeds . . . 
•	 A model of successful packet completion rate, which 

feeds . . . 
•	 A model of message completion delay (average and 

variance), which feeds . . . 
•	 A model of end-to-end completion time and accuracy 

for a specific capability, which feeds . . .
•	 A measure of some system operational performance 

measure
There are, however, many different ways to interconnect 

these models. Sometimes, they are all put together into a 
model-of-models, with fully automated interactions between 
each model. Other times, they are run separately, but the 
outputs from one are automatically fed into the next model in 
the chain (these are usually called federated models). Other 
times, the models are completely disjoint, and the outputs 
from one are manually transferred into the next model in the 
chain.

It is my experience that it is important that each model be 
maintained and operated by its actual creator; that creator is 
the expert who knows the limits of credibility for their own 
model better than anyone else, and having them maintain 
and operate that model, in turn, contributes to achieving 
better and more credible predictions. This motivates me 

usually to prefer the use of separate models with manual 
transfer of data! That sounds old-fashioned, but better 
accuracy and credibility in my view is more valuable than 
automated interconnection.

We use the models to analyze our system and its 
candidate designs; that is, how well does each of our candidate 
designs perform. Since we are concerned with whether it 
meets the needs of the users, the model must finally reach the 
level of being able to make predictions about the operational 
performance measures, not just about the technical 
performance measures. This is a common failing of system 
models; many are designed only to make technical predictions.

Of course, the system architecture skeleton described in 
the previous section provides a new and important way to 
predict system performance, too: we implement the actual 
system architecture skeleton early in the project, we populate 
it with models or prototypes of each independently-
schedulable entity, and this creates predictions based on 
realistic system dynamic behavior, since the system 
architecture skeleton is the mechanism for implementing and 
controlling the system’s dynamic behavior. 

Technical metrics that will allow for a credible assessment 
of the progress of the design

“Measuring progress on the design” is, in my view, of 
significantly more importance than books, standards, and 
training manuals generally recognize. Few texts, for example, 
talk at all about “measuring design progress” (Siegel) [11]vi.

To the extent that these source documents advocates the 
use of technical measures, they only advocate those that 
measure the design as a “black box”–its visible performance 
and capacity, for example. Seldom do they advocate technical 
measures of the “goodness” of structure and form; there are 
seldom “white box” measurements of the design.

I certainly advocate the use of management measures 
about design progress, and the use of black-box measures of 
system performance. But I have found that these are not 
sufficient! I therefore also advocate the use of direct technical 
measures about the internal suitability of the design. I 
advocate this because this is what I have consistently seen as 
the real failure mechanism in important engineering projects.

As discussed above, the need to prevent in advertent 
adverse, unplanned dynamic behavior is a key success factor 
in design, and also is an indication of why simpler is usually 
better in design. Everyone advocates the KISS1 principle, but 
what is it that you actually measure in order to achieve a 
simple design? The sources seldom tell you what to measure, 
in order to see if your design is simple or not. Here is my 
favorite example of a tangible design parameter that you can 
aspire to keep simple: the number of independently-
schedulable software entities within the mission software for a 
large, complex system. I always measure this parameter when 
I design or evaluate a system. One of my best systems (still in 
use 30+ years later – and that is an eternity in the software 

vi	 Although my forthcoming text “Engineering Project Management”, 
Wiley, 2019 Siegel [11], will do so!
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business!) had only seven independently-schedulable software 
entities in the mission software.

At the same time that I was building this system with seven 
independently-schedulable software entities in the mission 
software, the same customer had another company building a 
system for a slightly different mission, but one that shared 
many of the same operational conditions and constraints. That 
contractor was having problems, and the customer asked me 
to take a look at their work. It turned out they had no count or 
list of the independently-schedulable software entities within 
their system! How could they expect to control adverse dynamic 
behavior? At my suggestion, they made such a list; it turned out 
that they had more than 700 independently-schedulable 
software entities within their system’s mission software. What 
human being could understand the potential interactions and 
implications of so many independently-schedulable parts in a 
complex system? Their system was never fielded; it was about 
100x less reliable than needed (and more than 1,000x less 
reliable than my similar system).

In the end, the next system that I built for this same 
customer (which had 9 independently-schedulable software 
entities within the system’s mission software; I was unhappy 
that we went from 7 to 9!) was eventually adopted to take 
over the mission intended for the other company’s project. 
The other company spent nearly $1,000,000,000.00 and yet 
produced nothing useful. They failed to implement the KISS 
principle, and they failed to assess the progress of their design 
using any sort of white-box technical metric.

The above, although simplified from the versions 
presented in the references (especially Siegel [7] and Royce 
[9]), demonstrates that a set of steps can be provided, and a 
set of technical items that can be instrumented, observed, 
and measured, resulting in an ability to declare that in fact the 
design is complete in some meaningful, tangible, and 
objective fashion.

Implications and Conclusions
I spent many years of my career as the designated “fixer 

of system-development programs that were in trouble”. My 
insight from that experience was that lots of systems have 
bad designs. Why might that be?

•	 Designs often take place in an abbreviated period of 
competitive proposal selection. Once you have won, 
it is psychologically hard to recognize that your 
design might not be ideal. After all, it won!

•	 Fitting a design to the mixture of social and technical 
constraints is hard, and we tend not to iterate enough 
times, or to select the design based only on technical 
criterion (“effective”), rather than both technical and 
operational criteria (“effective and suitable”).

•	 We trim the design trade-space far too quickly. 
People hate ambiguity, and are therefore quick to 
down-select to a design that seems feasible, in order 
to stop the pain of carrying a lot of true alternatives.

Whether these are the correct causes of poor designs or 
not, in this paper I presented evidence from actual system 
development programs that what I have termed herein 
unplanned dynamic behavior is a key root cause of many 
system development problems; in essence, the design is not 
adequate for the task at hand.

This insight allows one to create a methodology, sequence 
of steps, and technical metrics that can in fact provide far 
higher assurance that one asserts that the design is done, you 
are truly in a state where the implementation can proceed 
without excessive risk.

In my view, the design is not done until you have accomplished 
these items:

•	 Explicit definition of all of the independently-
schedulable entities within the system (and likely, 
only a relatively small number of these), and a clear 
plan for how they will interact to form threads.

•	 Design mechanisms to control unplanned dynamic 
behavior (e.g., white-listing allowed behaviors, etc.)

These (and the technical metrics derived from them, such 
as port-to-port timing variance, etc.) form the key indicators 
of a mature, complete design.

Evidence was presented that using this software design 
approach, one can consistently complete complex software 
and software-intensive system development efforts, meeting 
cost, schedule, and performance parameters. 
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