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Abstract
The subject interest of nonlinear unsteady aerodynamics is one of great interest 

in the aerospace community. The interest is due to the fact that nonlinear unsteady 
aerodynamic behavior can have a significant effect on the performance and stability 
of a flight vehicle. To deal with such the aero elastic problem one generally models it 
by establishing state space equations. In this study, a new technique for determination 
of transonic nonlinear lift was developed based on discrete reduced-order Volterra 
series instead of relying on classical approach “eigen system realization algorithm 
(ERA)”. In this model, one can find out that several time-delayed terms appear. Here we 
employ Taylor formula to expand these time-delayed terms at the current instant, and 
then they are vanished. In this study, we also explain how to identify discrete reduced-
order kernels. As an example, the two sets of curves between the convolution kernel 
function method and CFD results match fine.

Keywords: Aero Elastic System; Transonic Flow; Reduced-Order Model; Kernel Function; 
Taylor Expansion.

Introduction
Aero elastic scholars focus on dynamic stability of the aircraft parts in the air as well 

as the phenomenon of flutter and dynamic instability [1]. When the flight speed reaches 
the critical velocity, the interrelation of the unsteady aerodynamic forces, the inertia 
force and the elastic force may lead to the vibration phenomenon that the amplitude is 
not attenuated (i.e. flutter), that cause the structure fatigue, damage and even damage 

[2]. The strong and weak shock wave of wing surface would induce the change of 
aerodynamic properties in transonic flow, which is the reason for flutter boundary pits 
and the limit cycle oscillation. Therefore, it’s essential to study the unsteady and 
nonlinear transonic aerodynamic properties [3].

The objective of flutter analysis is to search for flutter condition, namely the critical 
flutter velocity for a given aero elastic system. The nonlinear aero elastic system refers 
to that either the structure or the aerodynamic force is equipped with the non linear 
properties or both of them [4]. The structure nonlinearity is roughly divided into the gap 
nonlinearity, the cubic nonlinearity, the time delay and so on. The flight test of high-
aspect-ratio wing at high angle of attack and transonic area nature of nonlinear dynamic 
need to be studied.

Nowadays, computational fluid dynamics method (CFD) is widely used in the 
research of nonlinear aerodynamic forces under transonic flows [5,6]. A vast amount of 
literature on simulation calculations indicates that the CFD method is an economical 
and effective manner in comparison with wind tunnel tests. Nevertheless, it remains 
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some deficiencies. For example, executing a CFD code is 
commonly expensive & time-consuming, and huge amounts 
of calculated data is difficult to be effectively utilized. The 
technology of identification aerodynamic forces, such as 
reduced-order models (ROMs), proper orthogonal 
decomposition (POD), harmonic balance (HB), and neural 
network method, etc., as an effective alternative was proposed, 
applied and developed rapidly. Here, our study mainly focuses 
on ROMs in Volterra theory.

Base on Volterra theory or reduced-order Volterra series 

[7-10], various nonlinear dynamic forces can be modeled, 
namely a convolution model, which is suitable only to the 
given conditions but also to the situations where the 
experiments would be hard to reach. In Volterra theory, 
kernels need to be identified by the aid of CFD data. As to the 
advantage of ROMs in comparison with CFD simulations, it is 
more effective, but sacrificing accuracy. In ROMs, the reduced-
order kernels can be calculated by parametric or nonparametric 
identification approach. During identification, the required 
data may come from a flight test or other sources. At present, 
getting the data by executing a CFD code is a common 
fashion. However, in ROMs, the discrete time-delayed 
aerodynamic terms inevitably appear and need to be handled.

In the Establishment of an Aero Elastic System Model 
section, we describe a 2D wing model and introduce the 
identification strategy on Volterra series’ discrete kernels 
method. In the A new technique to deal with transonic time-
delayed aerodynamic forces section, a most efficient 
technique to handle the nonlinear time-delayed aerodynamic 
forces will be proposed to eliminate those time-delayed 
terms. By using this new technique, the original aerodynamic 
model changes into another without time-delayed terms, 
which is more convenient for various qualitative analyses in 
comparison with ERA technique. In the Conclusion section, a 
comprehensive summary of our work is made.

Note that all the results are based on the assumption of a 
weakly nonlinear aerodynamic system of interest and the 
small disturbance hypothesis.

Establishment of an Aero Elastic System 
Model
2D wing structure motion equation (Figure 1)

Figure 1. Schematic representation of the two-degree of freedom 
airfoil.

According to Lagrange equation, the matrix form of the wing 
structure motion equation is as follows:

aMx Cx Kx q f+ + = ⋅  	 (1.1.1)

Where M,C and K denote mass, damping matrix, and 
stiffness matrices. q , af and ( )1 2, , , T

nx ξ ξ ξ=  denote inflow 
dynamic pressure, generalized aerodynamic coefficient 
vector, generalized displacement of structure motion.

For ease of analysis, the structural motion equation is 
usually written in the form of the state equations in the 
following

1 1 1( , ) ( , )
I

x F x t x Q x t
M K M C M

θ θ
− − −

   
= = +   

−   
 	 (1.1.2)

where ( )1 2 1 2, , , , , , ,
T

n nx ξ ξ ξ ξ ξ ξ=   

  . aQ q f= ⋅ is the 
function of ,x t .

Ignoring the damping matrix, the equations of structural 
motion for the airfoil shown in Figure 1 may be written in the 
form as

á
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Where ,m Sα and Iα denote mass, static pitching moment 
and rotational inertia about the center of rigidity. hK and Kα
denote pitching spring stiffness and rotational spring stiffness. 
α And h denote the pitching and plunging displacements 
about the elastic axis. L And M denote lift and moment.

Using dimensionless time transformation tατ ω= , and 
noting the definitions below:
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w h e r e 21 (2 1)
2 lL V b Cρ ∞= ⋅ ; 2 21 (2 1)

2 mM V b Cρ ∞= ⋅ ; *
f

V
V

bαω µ
∞= ;

2
m
b

µ
πρ

= . lC and mC denote lift coefficient and moment 

coefficient, respectively. b and x bα denote the half chord 
length and the dimensionless distance between the centers of 
mass and stiffness. rα , hω  and αω  denote the dimension less 
rotating radius, the natural frequencies of plunging and 
pitching modes. , ,Vµ ρ ∞ and *

fV denote mass ratio, density, 
free-flow velocity, and dimensionless flutter velocity, 
respectively.

Then, Eq. (1.1.3) can be rewritten as the follows

2 2 2 2 2 2
1 1'

I
x x Q

M K M

θ θ

θ
× × ×
− −

   
= +   

−   
	 (1.1.10)

Where () '  means ()d
dτ

.

For a nonlinear aeroelastic system, with the increasing of 
free-flow velocityV∞ , various adverse aero elastic phenomena 
may be induced, such as limit cycle oscillation (LCO), chaotic 
motion and so on.

A simplified model of transonic reduced-order 
aerodynamic forces

Different from subsonic aerodynamics, transonic flow is 
inherently nonlinear and involves the production of shock 
waves. Under transonic flows, high-precise simulation 
calculations have to be carried out by means of various 
nonlinear governing equations, especially Navier-Stokes 
equations. Nowadays, CFD becomes research hotspot in 
numerical simulation calculations. The disadvantage is that it 
requires significant time-consuming and massive storage 
space. As an alternative, the identification technology of 
unsteady aero dynamic forces shows a high efficient and 
accuracy for solving transonic aero elastic problems. These 
technologies include aerodynamic identification of neural 
network, Volterra series and POD technologies, etc.

In transonic flow, the nonlinear aero dynamic forces can 
be expressed by Volterra series on the basis of the Volterra 
theory. Based on the assumption of transonic small 
disturbance, the weakly nonlinear aerodynamic forces can be 
modeled by a reduced-order Volterra series as follows [3]:
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Its discrete form is 

0 0
[ ] [ ] [ ] [ ] [ ]

k k

i p i p

Q k h h k i u i h h k u k i
= =

= + − + −∑ ∑= 	 (1.2.2)

where, 0h is steady-state solution of steady aerodynamic 
forces. 1h and 2h are the first-order and second-order kernels 
of the resulting system, respectively. h is called the reduced-
order kernel function or equivalent linear kernel function. The 
expression among the actual time-invariance t , discrete-time 

step k  and sampling time t∆ is t k t= ∆ , 1,2,3...k = p  is a 
constant of the system and 1k p− + denotes the system 
memory length. u is the arbitrary input, for example: motion 
displacement.

For a weakly nonlinear system, with the aid of CFD 
technology (obtaining the required response data for the 
identification of reduced-order kernels), the formulation of 
identification of reduced-kernels is given here as the follows 

[11,12]:

[ ]
s[ ] 0, 0

s[ 1] [ ],k 0
h k

k k

k s k
=

= =

+ − >





	 (1.2.3)

where s[ ]k represents the system step response; k is 
called discrete time step; and t k t= ∆ , t∆ is sampling time.

Sometimes, we hope to improve identification precision 
of the aerodynamic forces. In this case, one can model them 
by a reduced-order Volterra series as follows [3]:

1 2010 00 2 1 2 1 2( ) ( ) ( ) ( , ) ( ) ( )tt tQ t h h t u d t t u u d dhτ τ τ τ τ τ τ τ τ= + − + − −∫∫ ∫ 	
(1.2.4)

For the sake of convenience, this study mainly focuses on 
the time-delayed terms of Eq.1.2.2. In the next section, we will 
propose a new technique to eliminate them and obtain its 
approximately equivalent form of Eq.1.2.2.

A New Technique to deal with Transonic 
Time-delayed Aerodynamic Forces

In this section, a new technique is proposed to deal with 
the time-delayed aerodynamic forces. It is based on Taylor 
series expansion. Before proceeding further, let us briefly 
review the most common method, eigen system realization 
algorithm [13-15] (ERA).

At present, the most popular methodology to study aero 
elastic stability problems is to establish aero elastic system 
state equations [16]. How to transform the aerodynamic 
expression of Volterra series to state-space equations are the 
key techniques. ERA meets the requirement and has been 
widely developed since 1985 [13].

Classical eigen system realization algorithm (ERA)
Consider a linear dynamics system represented in state-

space form at discrete times , 1, 2,3...t k t k= ∆ = with a 
constant sampling time t∆ , as 

[ ]=Ax[ -1]+B [ -1]
[0]=0 1

[ ]=Cx[ ]+D [ ]
x k k u k

x k
y k k u k


≥


，， 	 (2.1.1)

where 1[ ] Rnx k ×∈ denotes an n-dimensional state vector; 
state matrix A Rn n×∈ ; input matrix B Rn r×∈ ; output matrix
C Rm n×∈ ; and feed-through matrix D Rm n×∈ completely 
define a linear dynamic system with anr-dimensional forcing 
function, [ ]u k , and m-dimensional output measurement, 

[ ]y k .
It is a well-known fact that Eq. (2.1.1) is equivalent to the 

Volterra series expression as the following
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y k Du k g i u k i g i CA B

∞
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where g[ ], i 1, 2,...i = denote the Markov parameters and the
k indicates the input and output samples at discrete times

.t k t= ∆ Given the input [ ]u k and output [ ]y k , the objective is 
to determine the appropriate size n  (McMillan degree) of the 
state vector [ ]x k in Eq.(2.1.1), and to estimate a discrete time 
state-space realization (A,B,C,D) of the dynamic system 
considered.

From the above description, the whole process needs to 
be done in two steps: 1) Volterra kernels identification, namely 
Markov parameters g( )i identification; 2) Modal parameters 
identification, namely the minimal realization of (A,B,C,D) . 
For decades, ERA is still much to be improved, such as 
selection of the excitation signal, error controlling and so on. 
Of course the crux of the problem lies in the aerodynamic 
problem of how to handle time-delayed aerodynamic forces.

In the “A new processing technique based on Taylor 
series expansion” section, a new processing method to handle 
nonlinear time-delayed aerodynamic forces will be proposed. 
This is an effective and convenient approach more suitable 
applying to various qualitative analyses.

A new processing technique based on Taylor series 
expansion

In this section, based on transonic small disturbance 
theory and the assumption of a weakly nonlinear aerodynamic 
system, a new processing technique to eliminate the time-
delayed aerodynamic forces is now proposed in details which 
is more convenient for various qualitative analyses in 
comparison with ERA technique.

According to the Eq. (1.2.2), transonic aerodynamic 
expression contains time-delayed components. Let the 
memory length of the system be, for example, 1 21k p− + = , 
then Eq. (1.2.2) can be rewritten as

0[ ] [0] [ ] [1] [ 1] [2] [ 2] + [20] [ 20]Q k h h u k h u k h u k h u k= + + − + − + − 	
(2.2.1)

Figure 2(a). Lift kernel function obtained by step-function method 
in the direction of pitching motion

Figure 2(b). Moment kernel function obtained by step-function 
method in the direction of pitching motion

Figure 2 shows the plot of the reduced first-order kernels of 
lift and moment for a pitching motion in Mach number 0.755 
based on Eq. (1.2.3). The time step of a CFD code is 0.001t∆ =  
second and the selected memory length 1 21k p− + =  is 
reasonable. Based on the Taylor formula the relationship 
between ( )u t  and each ( - )u t i t∆ can be written as the following

( )2 2''( )( ) ( ) '( ) ( ) ( ) , 1, 2,3,..., 20
2!

u tu t i t u t u t i t i t o i t i− ∆ = − ∆ + ∆ + ∆ = 	
(2.2.2)

where ( )o ⋅ is higher order infinitesimal about 2( )i t∆ .
Substituting Eq. (2.2.2) into Eq. (2.2.1), one can see that all 

the time-delayed aerodynamic terms in Eq. (2.2.1) vanish. 
Hence, this is a new technique to eliminate the time-delayed 
aerodynamic terms which have never been mentioned in 
ROMs before.

Now, let us rewrite Eq. (1.1.3) above. That is shown as 
follows

' ' *2
2 2 2 2 2 2

1 1' ' 2
f l

m

I V C
CM K M

θ θξ ξ
ξ ξ πθ

× × ×
− −

    −    
= +        −        

	 (2.2.3)

where 
Th

bξ α =   .

Applying our new technique to the Eq. (2.2.3), the values 
of lC and mC can be replaced by the following expressions

24
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(2.2.4)
Base on Eq. (1.2.3), and with the help of data provide by 

executing a CFD code, one can easily identify the values of all 
the [ ]h k , namely ( )k

ijh shown in the Eq. (2.2.4). Before executing 
a CFD code, the required structural parameters of 2D airfoil 
are listed in table 1.
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Table 1. Structure parameters.
Parameters Values Parameters Values Parameters Values

xα 0.25 hω 0.5 µ 125

rα 0.5 1 b 1m

For this pitching motion shown in figure 3, the two curves 
come from a CFD calculation and the convolution of the first-
order kernel with a sinusoidal input y=0.5sin(41.5t) , 
respectively. Here, the frequency of the sinusoidal motion is 
41.5 HZ, and the maximum motion amplitude is 0.5 degrees. 
A good approximation is obtained with the memory length of 
the 21. This is consistent with the desired result of linearization 
of a nonlinear system for small amplitudes.

Figure 3(a). Comparison of CFD and lift kernel convolution, due to 
a sinusoidal input y=0.5sin(41.5t)

Figure 3(b). Comparison of CFD and moment kernel convolution, 
due to a sinusoidal input y=0.5sin(41.5t)

Conclusion
This study modeled the aero elastic flutter equations for a 

2D wing, especially aerodynamic reduced-order models 
based on Volterra series expansion. In this model, one can see 
some time-delayed aerodynamic terms inevitable appear. For 
solving it, we propose a new technique to eliminate them 

which totally differs from the most common technique (ERA). 
ERA emphasizes how to transform a reduced Volterra Series 
model into state space model. Our technique emphasizes that 
if the aerodynamics time-delayed terms vanish, the changed 
new model of aerodynamic forces can be more convenient 
for various qualitative analyses.

The main conclusions can be summarized into the following 
several aspects:

1.	 Under the transonic small disturbance hypothesis and 
weakly nonlinear assumptions of aerodynamics forces, 
based on Taylor series expansion theory, the nonlinear 
aerodynamic forces can be modeled by the equivalent 
first-order linear Volterra kernels, by which a nonlinear 
system can be converted into a linearization system.

2.	 Based on Taylor expansion, a new technique to 
eliminate the time-delayed aerodynamics forces is 
proposed, which is a simple and directly approach 
more convenient for various qualitative analyses.

3.	 Due to the short memory length of step or pulse 
responses of a weekly nonlinear aerodynamic system, 
Taylor series expansion in this study definitely 
converges. This shows our technique proposed here 
is practical and effective.
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