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Abstract
This chapter examines the relevance of errors in experimental work and discusses 

some basic theory necessary for an understanding of the subject. Care is taken to 
distinguish between the different sources of inaccuracy with the emphasis throughout 
being on physical understanding rather than analytical complexity.

Keywords: Analysis; Experimental studies; Systematic error; Calibration

Introduction
Experimental measurements are inevitably influenced by errors, resulting from 

practical limitations of the equipment, such as the minimum scale division on a pressure 
gauge or the high frequency cut-off behavior of an amplifier. Thus, the experimentalist 
must assume that errors will be present in his observations and should take the 
appropriate steps to minimize their influence. This requires him to be aware of the 
possible origins of errors and to be capable of carrying out a simple error analysis. 
Whilst the importance of error control cannot be emphasized too strongly, it is usually 
sufficient in experimental studies to perform only a simple analysis and avoid undue 
complexity. With a little practice, an assessment of the errors in any experiment should 
become a routine. The analysis should then be applied as a matter of course during the 
design of the experiments [1-3].

Errors in experimental work are classified into three basic categories - namely 
systematic errors, random errors, and “careless mistakes”. 

The first two are amenable to analysis but generally require very different forms of 
treatment. Careless mistakes, on the other hand, are the direct responsibility of the 
experimenter and no amount of analysis can minimize their significance. One can only 
suggest caution and the incorporation of check procedures as the experiment progresses 
[4].

Definition of Error
Although it is easy to discuss “errors” in a qualitative manner, it is important that the 

meaning of this term is clearly understood before a further detailed analysis is attempted. 
The simplest concept of error makes use of a hypothetical true or exact value xt which is 
to be compared with an individual observation xi. By definition, the error is then given 
by [5]:

ei = xi - xt 	 (1)
Clearly, the difficulty with this simple ideal will be that an exact value is rarely, if ever, 

available so that we must substitute an estimate of the exact value. This can be derived 
from a more accurate instrument, from a carefully calibrated instrument or (in the case 
of a system which, displays significant random behavior) by taking the arithmetic mean 
of a number of individual observation. That the choice has some bearing on the outcome 
of the error analysis should become obvious in subsequent sections [6,7].
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Systematic Error
This particular kind of error leads to a constant bias in the 

measured values so that the data is always distorted in one 
direction. A typical example might be the error incurred when 
mercury in glass thermometer with an inaccurately drawn scale 
is used to measure flow temperature. In this case, repetition of 
the experiment will only lead to consistently wrong values with 
the errors always biased in the same direction at a particular 
temperature level even if random scatter does exist.

Elimination of systematic errors requires considerable 
thought before the experiment commences. Most 
advantageously, these errors can be eliminated by careful 
calibration wherever experience indicates that the accuracy of 
the Instrument may not be sufficient. If possible, it is advisable 
to use two or more quite different methods of approach to 
determine an experimental quantity. The presence of 
systematic error is then easily detected especially if calibration 
of one of the instruments against an accurate standard can be 
accomplished.

Calibration
Systematic error can be detected by calibrating the 

instrument against an accurate standard instrument and then 
presenting the data in tables or, more conveniently, in 
graphical form. A deviation plot to show the difference 
between, the true value and the instrument reading. It is also 
useful since, it emphasizes the errors, where these might not 
be so obvious from the calibration curve, and therefore draws 
attention to those parts of the range of the instrument which 
are most accurate.

Ideally, an instrument would give an output signal, which 
varied linearly with the input signal. This linear behavior, 
although desirable for a number of reasons (see section 2) is 
not always achieved.

Frequently, the calibrated response curve displays one or 
more forms of systematic deviation from the linear relationship 
as illustrated in figures 1, 2, 3, 4; these deviations will be revealed 
if a careful static calibration of the instrument is carried out. 

Other sources of systematic error can of course exist when 
the instrument is subjected to dynamic input signals. Whilst, in 
all probability, the effects of a false zero and/or nonlinearity 
can be corrected for under static or dynamic input conditions, 
the combination of hysteresis, saturation and a dynamic input 
signal imposes considerable problems. In this situation, the 
deviations become frequency dependent, i.e. systematic errors 
are introduced which depend upon the frequency (component) 
of the dynamic signal. Consideration of a typical turbulent flow 
property (section 6), which generally contains a range of 
frequencies, illustrates the difficulties thereby introduced. 

The difference between the instrument reading (from the 
calibrated scale, perhaps) and an accurately known applied 
value is the systematic error. Clearly, in the extreme case 
where a linear calibration is assumed figure 1, then the 
deviation would be representative of the systematic error. 
Normally, however, the systematic error will be removed from 

the observed data using a calibration curve before the data is 
processed. In the first instance, when the experiment is being 
designed, it is nevertheless of value to examine the effect of 
the individual systematic errors because errors because this 
can reveal which quantities required special attention and 
care in measurement.

Additionally, a simple analysis can give some idea of the 
maximum possible systematic error in the final result. 

Analysis of systematic errors
In most experiments, the results will be obtained by 

combining a number of experimentally measured quantities. 
If these measurements are each affected by systematic error 
then the result must also contain a systematic error. A simple 
analysis enables these errors to be related although it would 
obviously be better practice to remove systematic effects 
before calculation of the result using the calibration curves.

Systematic Errors Revealed by 
Calibration

Figure 1. Typical response curve – compare with linear instrument

Figure 2. Response curve with zero error

Figure 3. Response curve - instrument exhibits saturation

Figure 4. Hysteresis - Response depends upon direction of changes
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Suppose a result z is evaluated from observations x, y 
which, have true values, xo, yo. Let ex,ey, and ez denote the 
systematic errors so That:

ex = x - xo, ey = y - yo, ez = z - zo	 (2)

Given a functional relationship between x, y, and z of the 
form:

z = f (x,y)	 (3)
then the systematic error ez in the result is given to a first 

approximation by

yxz e
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e
x
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∂
∂

+×
∂
∂
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Knowing the functional dependence of the result z on the 
measured quantities (x, y), the various systematic errors can 
then be related. This procedure is best explained by means of 
some examples.
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Note that, in this particular case only, the fractional errors are 
additive. Similarly, if z = x/y then
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error are subtractive.

In general, systematic errors are relatively easy -to deal with 
once their presence has been detected by calibration. 
Conceptually also, they appear to cause less problems than 
errors resulting from random influences which require some 
understanding of statistical ideas.

Random Error
Statistical Treatment of Random Data

Random errors arise from the combined effects of a 
number of (small) fluctuating influences on the measurements. 
Typical sources could be changes in room temperature, the 
mains voltage or a mechanical vibration. Random errors are 
seen to be present when repetitive measurement of what is 
assumed to be an unchanging quantity yields values which 
fluctuate (in random manner) about a mean value, refer to 
(Figure 5). The magnitude of the random errors is assessed by 
using some measure of the spread of the observations about 
the mean value.

Figure 5. The appearance of random errors in a set of n 
observations

At this stage, it is possible to distinguish between the 
terms precise and accurate as they are applied to instrument 
readings. An accurate value is one which, lies consistently 
close to the true value and thus has negligible systematic 
error. In contrast, a precise instrument gives readings which, 
agree among themselves - having negligible scatter or 
RANDOM ERROR - but may nevertheless involve large 
systematic errors.

Thus, it is possible to obtain experimental results with 
high precision but poor accuracy. If the precision of the 
instrument is poor (significant scatter in data) then good 
accuracy is unlikely for a single observation but might be 
achieved using the mean of a large number of values.

On repeating the measurement of a random quantity, 
having a constant mean value and spread, it will be found that 
approximately equal numbers of the data lie on either side of 
the mean value. In fact, the mean of an infinite number of 
observations, which are subject only to random errors and 
follow a normal distribution (section 5) can be shown to equal 
the true value of the particular quantity. For all practical 
purposes, an infinite (large) number of observations are unlikely 
to be available usually; a small finite number of observations 
will be recorded instead, enabling the ‘uncertainty’ in the mean 
of these to be estimated using statistical analysis.

It is important to draw a clear distinction between the 
infinite population and; finite samples of data before any 
analysis of random errors is attempted. Whilst most of the 
theory is based on the behaviour of an infinite population, it 
is always the case that experimental data is in the form of a 
small finite sample and the theory must be modified to 
account for this fact.

Frequency distribution of the data before we can study 
random errors, we need to consider how the set of data is 
distributed about its mean value. There are several ways by 
which this spread can be described. Suppose we make 
repeated measurements of some quantity (typically voltage, 
temperature, or pressure) which is assumed to be invariant 
with tine. In practice, the data will be scattered about a 
particular level and values close to the mean will occur more 
often than values far from the mean.

Consider, as an example, the data given in table 1 which was 
obtained when a nominally constant voltage was measured 
repeatedly using a voltmeter capable of 0.1 V resolution. The true 
value is known to be somewhere near 100 V and a total of 100 
observations were taken. The histogram figure 6 shows how this 
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finite sample of data can be plotted as a series of rectangles 
(known as a histogram) to indicate how the sample is distributed 
about its mean value. In this case, the width of the rectangles (1 or 
2 volts) equals the width of the bands into which the data has 
been divided. Where the bands have equal width, the height of 
each rectangle represents the number of readings lying in that 
particular band (or range). If, for some practical reason, the bands 
are of unequal width, their height is determined by the condition 
that the area of the rectangle should be proportional to the 
number of observations in the band. Thus, the height of each 
rectangle is made proportional to (number of observations in the 
band/bandwidth) and the area enclosed by the histogram 
represents the total number of observations in the sample of data.

Although there is no rule for choosing the optimum number 
of bands into which the sample should be divided, experience 
shows that between five and “ten bands will generally be 
sufficient. The actual location and width of these bands can have 
a dramatic effect on the appearance of the histogram and some 
careful thought on the part of the experimenter is required to 
ensure that the wrong conclusions about the frequency 
distribution of the data are not reached. This is especially 
important where the data is to be compared with an ideal 
(possibly normal) distribution. In this case, it would be appropriate 
to make use of more sophisticated numerical descriptions of the 
frequency distribution rather than the shape of the histogram 
alone. Differences between the Normal Distribution and the 
sample may be expressed in terms of skewness and flatness 
factors as indicated in figure 7, these advanced statistical 
parameters are discussed by, for example, Paradine and Rivett (5). 

Cumulative frequency distribution
As an alternative to the histogram, the frequency 

distribution of the data can be represented using a curve (or 
series of rectangles) to show the total number of observations 
occulting below a certain value. The reverse cumulative 
“frequency distribution curve”, showing the total number of 
observations occurring above a certain value could also be 
constructed if required. figure 7 presents the data of the 
previous example table 1 in these forms.

Figure 6. Typical frequency histograms significance of the interval 
and it width.

It is often more convenient to normalize both the histogram 
and cumulative frequency distributions so as to work in terms of 
percentages. Considering the histogram shown in figure 6, the 

proportion of the sample contained by the band centered on 
99.0 volts is 0.25: this corresponds to the statement “25% of the 
observations lay within the range 98.5 to 99.5 volts’. Recently, it 
has become common to employ digital computer methods to 
process large sets of data and thus calculate the parameters, 
which describe the frequency distribution and other statistical 
properties. [4,5] have covered this topic in considerable detail: 
the former in particular gives useful practical guidance on the 
application of these methods to fluid flow measurement.

Measures of Central Tendency
Any set of observations, which are affected by random 

errors, will be distributed about some mean level: this is 
referred to as the central tendency of the data.

To describe such a set of data, therefore, it is necessary to 
calculate a numerical parameter, which specifies the average 
value of the observations. The following two parameters are 
most commonly employed for this purpose.

(i)- Average value or arithmetic mean
If the observations are represented by the symbols
x1, x2, x3, …………,xn

then the average value x  is defined by the expression:

nxxxxx n /)............( 321 +++= 	 (5)

(ii) Root mean square or quadratic mean value.
Although many parameters can be used to describe the 

amplitude of a fluctuating quantity - whether this be a time 
varying analogue signal or the spread of individual observations 
about some mean - perhaps the most familiar and useful 
quantity is the root mean square value. This can be defined as 
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in the discrete form. When a continuous analogue signal is 
involved, the equivalent integral expression
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may be used, where “the integration time T is suitably long 

Figure 7. Cumulative frequency distribution (cdf) and reversed cdf.
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Table 1. Typical Experimental Data - used - to illustrate  
random error analysis

Measured Voltage
From To

Number of Readings 
Occurrence in Hand

Cumulative Total 
Number of Readings

93.5 94.5 0 0

94.5 95.5 2 2

95.5 96.5 3 5

96.5 97.5 7 12

97.5 98.5 11 23

98.5 99.5 25 48

99.5 100.5 17 65

100.5 101.5 15 80

101.5 102.5 11 91

102.5 103.5 6 97

103.5 104.5 1 98

104.5 105.5 2 100

105.5 106.5 0 100

Measures of Deviation from the Mean
A method, of describing how individual values are 

distributed about the mean value is required. The chosen 
parameter must take into account the frequency distribution 
of the data so that the percentage of observations falling 
within a certain range can be specified. The quantity most 
often chosen to describe the scatter of the data is the standard 
deviation defined as:
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In this expression, x  is the mean value of the sample and 
xi are the individual observations. Note the similarity of this 
quantity to the definition of a root mean square value given 
under section (2).

An alternative measure of the deviation is the variance S 
defined, by the expression
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Infinite Population and the Normal Distribution
There is no reason in theory why the size of the sample 

should be restricted. Thus, it is useful to consider the ideal 
situation where the sample size is increased without limit and 
the number of observations tends to infinity (written n →∞). 
In experimental work, a very common assumption is that the 
finite sample of data has been drawn from such an infinite 
sample and, moreover, that the properties of the smaller 
sample may be used to indicate the parameters of the infinite 
sample.

It can be expected that the frequency histogram and the 
cumulative frequency distributions would each merge into a 
smooth continuous curve if the size of the population were 
increased towards infinity and the bandwidth was 
simultaneously reduced to zero. Statistical analysis based on 
an infinite population and infinitesimally small bandwidth will 
enable conclusions to be drawn from the finite sample.

In situations where the measured values vary in a purely 
random manner, as they do in many natural processes, then 
the distribution of an infinitely large sample about, the mean 
value follows the Normal or Gaussian distribution. This 
idealized distribution De Moivre in 1733 states that the 
fraction of the total observations having a value x, or the 
probability of the value being x is given by the expression:


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Here, s is the standard deviation about the mean given 
by the integral expression

∫
+∞

∞−
−= dxxpx )()( 22 ms 	 (11)

and the mean value of the infinite sample, or the population 
mean m is evaluate from: 

∫
+∞

∞−
= dxxpx )( m 	 (12)

The probability p(x) is represents the chance that the particular 
measurement will have the value lying in the range, x to x + 
dx. For example, if the area under the curve between values x1 
and x2, is 0.1, then the Normal Distribution indicated that 10% 
of all observations will fall within that range. Since it is 
theoretically possible, with an entirely random function, for 
any value to occur, it can be shown that: 

∫
+∞

∞−
= 1)( dxxp 	 (13)

N.B. Caution
It is wrong to assume that the distribution of all variables 

automatically follows a Normal Distribution. Nevertheless, 
this ideal probability distribution often forms a good 
approximation to the distribution of errors in experimental 
data. Numerical checks are available - Paradine and Rivett (5). 
figure 8 shows the familiar bell-shaped curve, which represents 
the Normal Distribution. It has already been stated that the 
area beneath the curve, between specified limits, represents 
the probability of a measurement falling within those limits. 
Recognition of this figure enables the following measures of 
random error to be introduced. 

(i)	 Probable Error 
If the limits of m-0.675 s and m + 0.675s are considered, 

the area beneath the curve is found to be 0.50. Thus any 
observation has a 50% probability of falling within these 
limits. The quantity 0.675 s sometimes referred to as the 
probable error in a single measurement.

(ii)	 Uncertainty
Choosing limits of m - 2 s and m + 2 s it can be shown that 

the area beneath the curve is approximately 0.95. Thus only 
5% of the observations would be expected to fall outside 
these limits (i.e. a 20: 1 chance of exceeding this deviation 
from the mean value m). It is common practice to refer to the 
quantity + 2 s as the uncertainty in a single measurement.
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Figure 8. General properties of the normal distribution.

Standard error of the mean of a sample
If we could obtain an infinite number of observations 

then the mean would be an accurate measurement of the 
quantity (provided that systematic errors were negligible). 
Unfortunately, it is impossible in practice to do this and we 
must make do with a finite sample of n observations. The 
mean x  this simple is then our best available estimate of the 
true population mean m. 

Theory shows that if we were able to measure an infinite 
number of such samples each that of size n from the infinite 
normally distributed. This normally distribution population of 
standard deviation s. Then the means of such samples would 
be distributed normally but with a smaller spread than for the 
population, as shown in (Figure 9). Considering the distribution 
of the mean values of the finite samples, then the standard 
deviation of this distribution is referred to as the Standard 
Error of the Mean (of the sample).

Standard error of the means = s / √n	 (14)

In a similar manner as was done for the infinite population, we 
can also define an Uncertainty of the Mean wx the relationship:

Uncertainty of the mean wx = 2 s / √n		   (15)
Clearly, four readings will give an estimate of population 

mean m that will be twice as precise as an estimate based on 
one reading, sixteen readings will give an estimate of the 
mean which will be four times as precise and so on.

Before we can employ equations (6.1) and (6.2) the standard 
deviation of the infinite population, s must be estimated. 
Sampling theory shows (see Moroney (6)) that if s is the 
standard deviation of a finite sample of n observations then 
the best estimate of the population standard deviation is 
given by:

22 s  
1








−
=

n
n

es 	 (16)

where, the suffix e denotes the ‘best estimate’.
The factor n/(n-1) is Bessel’s correction of the sample 

variance s2 to give best estimate of the population variance 
s2. When n is large, this factor tends to unity.

Employing equations 15, 16, it therefore follows that the best 
estimate of the standard error of the mean is:

Standard error of mean = 
( )

2/1

2 )1/(/)(








−−= ∑ nnxx
n i
s 	 (17)

Similarly, we can calculate the uncertainty by of the mean 
simply by multiplying equation (6.4) by two.

Figure 9. Distribution of the means of a set of finite samples.

Multi-component errors
In an experiment, it is likely that the result will depend, 

upon a number of measured quantities, each of which may be 
affected by random errors. Hence, it becomes important to 
calculate how these separate influences can reduce the 
precision of the overall result. 

Where a functional relationship exists between the 
variables, the combined influence can be determined if the 
random errors in the variables are completely independent. 
The analysis which, follows shows how this may be achieved 
for the general case.

Suppose there is a relationship between the (dependent) 
results R and the (independent) variables x, y, z of the form:

R = f (x,y,z)	 (18)
A corresponding set of predicted results.
R1 = f (x1,y1,z1)
R2 = f (x2,y2,z2)	 (19)
Rn = f (xn,yn,zn)
For each variable x, y, z, R, it is possible to calculate the 

mean-values Randzyx   ,  ,  and the random errors for each 
separate measurement as defined. For the purpose of this 
argument, denote these dxi, dyi, dzi and assume that these 
introduce random errors in the result dRi, where i = 1,2,3 …,n.

Differentiation of equation (3.7.1) shows that these changes 
can be related, correct to first order terms, by the equation:
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where the differential coefficients are to be evaluated at the 
mean values  ,  , zyx . Squaring this equation lead to:
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Summing all the equations for i = 1,2,3…..,n and dividing 
throughout by n leads to the relationship:
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Note that the cross products have an equal probability of 
being positive or negative (if the errors are completely 
random) and thus the sum of all such terms will be zero.

Reference to equation (15) shows that each term in the above 
equation represents the standard deviation in the particular 
variable: thus 
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With a little manipulation, this can be re-written in terms of 
the probable error PR or the uncertainty wR in the derived 
results R, as shown below:
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Having derived these relationships, some estimate of the 
errors involved in each variable must be made. Since it will 
usually suffice to estimate the errors, rather than make an 
accurate calculation, even a crude estimate based on an 
instrument scale division or the spread displayed by a small 
number of repeated observations will be sufficient. A common 
assumption when no possibility of calculating the standard 
deviation of a sample exists, is to take half the minimum scale 
division of an instrument as an estimate uncertainty (twice the 
standard deviation).

table 2 below gives expressions for the random errors 
associated with some typical algebraic functions. To enable a 
ready comparison, the calculated systematic errors are also 
shown alongside: the differences, which arise when dealing 
with the two types of error should be carefully observed.

Often, the functional relationship between, the variables 
will not be known, and the experiment consists of a 
determination of some dependent variable (R) for specified 
values of the independent variables (x, y, z). The only method 
by which the random errors can be assessed in this situation 
is for the observations to be repeated several times with fixed 
values of the independent variables, so that a scatter or 
tolerance band can be placed on the data. Again, the emphasis 
should be on making an order of magnitude estimate of the 
random errors, not on performing an elegant series of 
calculations. 

For problems involving a large number of variables, this 
exercise can become a complicated procedure. We shall 
return to this topic again in the following chapters, and there 
consider how the uncertainties in the measured data influence 
the interpretation of our experimental findings.

Table 2. Error equations for some common functions.
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Conclusion
The measurement of any physical quantity is inevitably 

influenced by experimental errors, which may be categorized 
as either random or systematic. The experimentalist needs to 
understand the difference between these two types of error 
and should determine which is appropriate to his own 
investigation before attempting an error analysis. Only 
relatively simple analysis is then required to determine how 
the Quantity will be influenced by errors in the various 
independent variables. This chapter has shown how calibration 
may be used to remove the influence of systematic errors 
whilst random errors can be minimized by statistical analysis.
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