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Abstract
Sulfur in feedstocks are increasing steadily. Consequently, changes in regulations 

force industrial companies to operate Sulfur Recovery Units more efficiently. An 
industrial Sulfur Recovery Unit of TUPRAS, Turkey was modelled by Matlab by using 
simplified kinetics. Proposed model was validated with the industrial data of TUPRAS. 
The model represents the important species with minute deviation. According to the 
model proposed, conversion and recovery were found to be 65.24% and 86.88%, 
respectively; where they were calculated to be 64.91% and 82.72% in design case.

Moreover, effects of air temperature were studied in this work. According to the 
simulation results, up to $13,200/year can be saved by removing preheating. Because 
carbon content is essential in gas mixture, effects of COS and CS2 on catalytic part after 
this modification are found to be negligible in short term. This design change also 
increases the sulfur production by about 600 kg/day. On the other hand, amount of 
COS, CS2, H2S released from Selective Oxidation Reactor would be enhanced from 25 to 
31 ppmmol, which increase overall SO2 emission from incinerator.

Keywords: Sulfur Recovery Unit, Modeling, Simulation

Introduction
Oil refineries and gas plants process enormous amounts of feedstock to obtain 

valuable products such as; fuel for vehicles, raw material for petrochemical industry. 
Recent regulations forced these sectors to lower the sulfur ingredient of both products 
and waste streams [1], significantly. On the other hand; beside their low cost, “opportunity 
crudes” with various compositions and increase in the sulfur content of the feed stocks 
[2] became pain in the neck when it comes to processing the crude oil. Moreover, 
because of the developing technology and constant demand [3], worldwide sulfur 
import and export values were halved in 4 years [4,5]. Above mentioned progresses 
faced companies to treat acid gas more effectively to reduce the emissions and 
operational costs.

There are several methods; including catalytic, electrochemical processes [6]; to 
convert H2S into non-toxic derivations of sulfur. For industries with high capacity and 
high concentration, the most widely used technique is Claus Process, in which acid gas 
is passed through thermal and catalytic reactors to obtain elemental sulfur and steam. 
Figure 1 represents a Modified Claus Process Configuration [7-15].
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Thermal part is the first medium that mixture of effluent 
compounds pass through and consists of a thermal reactor 
(TR) and a waste heat boiler (WHB). Thermal reactor breaks 
down most of the waste gas; including mainly H2S, NH3, water, 
and essentially mercaptans, paraffins, olefins, carbondioxide 
and other inert gases; at that point temperature may elevate 
up to 1500K and HP steam is obtained by means of WHB. 
Meanwhile, acid gas becomes extremely corrosive and leads 
cracks within the refractory. And the consequences may be 
catastrophic. On the other hand, temperature is one of the 
most critical parameters because it regulates the kinetics and 
is able to shift conversion towards both sides. Composition is 
another parameter that affect the products and hence, 
emissions. And finally, steam obtained from WHB is used in 
heat exchangers and electricity production. There by, it is 
economically beneficial to control and increase the energy 
efficiency. Summing these up, importance of modeling 
thermal part becomes undeniable [16-28].

After, acid gas proceeds towards catalytic part, in which 
substitution and hydrolysis processes are observed on Titania 
or Alumina catalysts unlike thermal part, in which oxidation 
processes take place without any catalyst. Catalytic part 
consists of two or three catalytic beds connected in series, 
generally. Some plants may have further treatment units in 
order to meet the demand of strict environmental regulations, 
which limit H2S conversion to minimum of 99% levels. These 
additional systems are told to enhance the sulfur recovery 
more than 99.9%.

At the end, remaining gas is moved to incinerator to 
destroy S-containing molecules (e.g. COS, CS2, H2S) into SO2. 
SOx and NOx formed are released to atmosphere.

Figure 1. Modified Claus Process for acid gas with ammonia 
treatment.

H2S conversion in these parts can be shown as:

H2S + 1.5O2→ SO2 + H2O	 (1)

During reaction (1), 1/3 of H2S is converted into SO2.

2H2S + SO2 → 1.5S2 + 2H2O	 (2)
In reaction (2), 2/3 of H2S combines with SO2 produced to 

form elemental sulfur. 
In the TR, pressure range isabout1.80 kg-f/cm2 and 

temperature varies between 1300-1500K in order to destroy 
undesired molecules but the refractory.

To maintain sufficient sulfur recovery, lower emissions 
and produce higher energy within certain limitations while 
considering safety and sustainability, the system should be 
operated carefully. A reliable model is necessary to reflect the 

characteristics of the processes. Modeling is also crucial for 
human and equipment safety, to study capacity status and to 
investigate environmental impacts.

Modeling Thermal Part
Elements of thermal part are thermal reactor, waste heat 

boiler and sulfur condenser. Inlet streams are acid gas (AG), 
gas from sour water stripper (SWS) and air. AG comes from 
Amine Gas Treatment Unit and is composed mainly of H2S 
(>90%). SWS gas contains 40% H2S, 40% NH3 and 20% H2O. 
AG and SWS is mixed before being fed to the furnace. Air can 
be enriched by oxygen supply. In this work, air is not enriched 
and carries 21% O2. table 1 shows the properties of inlet 
streams of one of SRUs in TUPRAS, Izmit Refinery.

Reactor was modelled by using Fourth Order Runge-Kutta 
Method by assuming;

•	 Steady state process, 
•	 Fully developed turbulent and plug flow regime (due 

to high flow rate),
•	 Ideal gas mixture (due to high temperature, low 

pressure),
•	 Adiabatic reactor (due to furnace refractory),
•	 Absence of radial transport, 
•	 Absence of fouling.

Table 1. Properties of inlet feed (air and acid gas mixture) to the 
Thermal Reactor, Izmit Refinery, Tupras

Property Acid Gas + SWS Air
H₂S % 77.98 0.00
NH₃ % 10.80 0.00
H₂ % 0.05 0.00

CO₂ % 0.50 0.03
H₂O % 10.40 4.26
CH₄ % 0.05 0.00
O₂ % 0.00 20.06
N₂ % 0.00 74.76
Ar % 0.00 0.89

Impurities % 0.22 0.00
Total 100.00 100.00

Flow Rate (kmol/h) 353.80 762.74
Temperature [°C] 81 210

Pressure (kg/cm²-g) 0.7 0.7

Mass balance for PFR for each component i(i=1:N) is:

	 (3)

Energy balance for PFR is:

	 (4)

	 (5)

	 (6)

For equation 6, .
Model results for the composition of important species 

and temperature profile within the reactor are shown in figure 
2 and figure 3, respectively.
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Figure 2a. H2S, SO2, H2O and S2; (b) H2, N2 and NH3 composition 
profiles along the Reaction Furnace (RF)
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Figure 3. Temperature profile along the Reaction Furnace (RF)

According to figure 2 (a), most of the H2S is oxidized then 
combined with SO2 to yield S2. As by product, H2O is formed. 
figure 2 (b) shows that all of the NH3 is reacted to N2 and H2. 
According to figure 3, Temperature rises immediately at the 
very beginning of the reactor, due to highly exothermic 
reactions. After a while, temperature declines smoothly due 
to endothermic reactions. This temperature decrease enhances 
combination (e.g. COS formation) reactions.

Table 2. List of Reactions used for Modeling

Table 3. Arrhenius Constants for Reactions

Validation
Simulation results of molar flow rates were compared 

with the design data of the Izmit Refinery, Tupras.
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Figure 4. Molar Flow Rate (kgmole/h) of Important Species

figure 4 represents important molecules that are present 
at the outlet of the reaction furnace in column chart. At the 
first glance, H2S and SO2 deviate from their design values. 
H2O, H2 and S2 are consistent with the design values with small 
deviations. Finally, it can be seen that all of the NH3 is 
converted to N2 as expected. All of the hydrocarbons are 
consumed and flow rates of COS and CS2 are found to be less 
than 0.2 kmol/h, which are negligible compared to above 
mentioned ones. Thereby, they were not shown in figures. 
The deviations are because of simplified reaction mechanisms 
and are negligible in practical perspective.

Effects of Inlet Air Temperature
Temperature is one of the most important parameters for 

Sulfur Recovery Process. It directly affects the kinetics and 
equilibrium. On the other hand, energy consumption and 
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production can be altered with simple modifications. Air feed 
(Air0)is heated from 90°C upto 210°C and split into two 
streams; one (Air1) is for Reaction Furnace, other one(Air2)for 
Selective Oxidation Process, as shown in (Figure 5).

Figure 5. Heat Integration of Sulfur Recovery Unit (Case 1)

Unlike the other SRUs, this unit has heat integration: HP 
steam obtained from WHB is used to preheat the air. Effects 
of this heating process is investigated in next sections for 
entire plant
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Figure 6. Reaction Furnace Temperature vs. Air1Temperature

figure 6 shows that reaction furnace temperature increases 
as air temperature increases. That is because internal energy of 
the molecules approaches towards the activation energy.

Sulfur Production
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Figure 7. S Conversion/Production vs. Air1Temperature.

According to Figure 7, change in overall sulfur production 
is less than 1 ton between 90 and 260°C. Because the sulfur 
prices are about $50/t, varying temperature does not have a 
significant impact from financial perspective.

Catalysts
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Figure 8. COS+CS2Flow towards First Reactor vs. Air1 Temperature

As can be seen from Figure 8 increasing air temperature 
augments COS and CS2 production, slightly. This increase may 
not affect the catalysts in short term.

Environmental Impacts
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Figure 9. COS, CS2, H2S Emission vs.Air Temperature [°C]

The regulations limits mainly SO2 emission. (Figure 9) 
shows that increasing air temperature from 120 to 260 °C 
decreases emissions 23%. This cumulative emission value is 
read on the stream before the incinerator. Because COS, CS2 
and H2S molecules are oxidized to SO2, and they are considered 
as pollutants; they have to be controlled carefully. 

Energy
figure 5 shows that air is preheated by using HP steam 

obtained from WHB. Net power after the preheating process 
(Qin-Qout) is investigated in this section. The result is shown in 
(Figure 10).
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Figure 10. Net Power as kJ/h vs. Air Temperature [°C]

According to figure 10, net power decreases as temperature 
increases. That is because Air0is heated completely but used 
partially (as Air1) to yield energy. This means, heat is obtained 
as HP steam, only because of Reaction Furnace, not of Selective 
Oxidation Reactor. And Air2 is heated unnecessarily. This 
circumstance is investigated in the next section, in more detail.

Effect of Selective Oxidation Reactor (SOR) on Energy 
Consumption

According to previous section, it was shown that air 
consumes more energy than it actually generates via 
combustion reactions. That is due to air is completely warmed 
up but only partially used in furnace, rest is fed to Selective 
Oxidation Reactor. In this part, comparison between heating 
the air completely and partially is performed.
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Figure 11. Net Power Obtained from WHB with and without 
Selective Oxidation Reactor (SOR) at Different Temperatures

Figure 11 shows the impact of selective oxidation reactor. 
At the first glance, it can be seen that increasing air 
temperature enhances “Net Power Gap”. That is because a 
part of Air0 is heated unnecessarily. At 210°C, about 150,000 
kJ/h power can be saved by de-attaching Air2 stream from the 
preheater. By assuming 90% of harvest efficiency, and using 
average HP steam value of the unit, $5200 can be saved per 
year if the SOR is de-attached from the preheater. (Figures 12 
and 13) show two possible configurations to save energy. 
table 4 summarizes the results of these possibilities.

Figure 12. SRU Configuration without Preheating SOR Air (Case 2).

Figure 13. SRU Configuration without Preheating Air (Case 3).
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Figure 14. Effects of Preheating Air Feed of SOR on the 
S-Containing Molecules

Figure 14 shows that increasing temperature decreases the 
emissions (that go towards the incinerator), which are oxidized 
into SO2. Changing configuration from design case into Case 2 
(not preheating Air2) increases the emissions about 2 ppmmol 
at design temperature. Details are given in (Table 4).

Table 4. Comparison of Different Configurations Shown in  
(Figures 6, 12 and 13).

Heating Furnace & 
SOR air (Design)

Heating only 
Furnace Air

without 
Heating

Air1 Temperature [°C] 210 210 90
Air2 Temperature [°C] 210 90 90

Sulfur Production [tpd] 209.4 209.5 210.0
RF Temperature [°C] 1319.0 1319.0 1276.4

COS+CS2to 1st reactor 
[kmol/h] 0.3 0.3 0.3

COS, CS2 and H2S to 
incinerator [ppmmol] 25.3 28.4 31.4

Net Power as HP Steam 
[kJ/h] 4.95E+07 4.96E+07 4.99E+07

EnergySaving [$/year] 0 5238.4 13220.8
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(Table 4) shows the results of possible configurations. It is 
possible to save $5.2k/year by de-attaching Air2 stream from 
the preheater and $13.2k/year by removing preheating system 
completely. On the other hand, these operations slightly 
increase S-containing molecules that are going to be oxidized 
to SO2. Meanwhile, sulfur production do not change significantly. 
According to simulation results, without preheating (shown in 
Figure 13), RF temperature decreases as expected.

Conclusion
Sulfur content of the crude oils is increasing. Recent 

developments in the sulfur processing has decreased the 
sulfur prices. Regulations are becoming stricter for both sulfur 
contents in fuel and emissions during treatment processes. 
These circumstances force companies to operate refineries 
more efficiently.

In this work, a Sulfur Recovery Unit of TUPRAS refinery 
was modelled by using simplified kinetics. The model predicts 
the composition of important molecules with minor error 
values. Furthermore, a simulation performed in order to 
investigate the effects of air temperature for entire plant. Air 
temperature was found to have a positive relation with COS 
and CS2 flow rates towards the first catalytic reactor. However; 
due to low concentration, this incline can be neglected in 
short term. On the other hand, increasing air temperature 
decreases emissions, sulfur production and net power 
obtained by means of WHB. 

A close research was performed upon the air preheating 
system and 2 configurations other than the design case was 
proposed. Regarding to these suggestions, sulfur production 
as well as concentration of the S-containing molecules may 
be enhanced slightly by decreasing the temperature of the 
feed air. By removing preheating system entirely, up to 
$13.2k/year can be saved whilst increasing emissions, slightly. 
For the sake of simplicity, reverse was not shown (i.e. 
preheating air much more), however emissions can be 
decreased by increasing the air temperature. In that case, RF 
temperature must be considered carefully.
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