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Abstract
Petrochemistry needs stable, environmentally-friendly and efficient materials for 

use in the transformation, purification, and analysis of oil products. Ionic liquids (ILs) 
meet these requirements. A novel group of ILs with a very specific anion – dimethyl 
phosphate (DMP) ion – has appeared recently and can be designated as ILs-DMP. The 
DMP anion increases hydrophilicity and allocates the complex-formation capacity to 
ILs-DMP. Although these new materials have been widely used in cellulose dissolution 
processes, they have not been explored sufficiently in petrochemistry. There is a reason 
to believe that, in comparison with other ILs, the DMP anion can also provide additional 
benefits in oil chemistry. Unfortunately, no collected information is available about ILs-
DMP in literature. The information presented in the review can pave the way to new 
applications of these unique materials.
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Introduction
Ionic liquids (ILs) have gained a stable position in technology and research in the 

last quarter of the 20th century. The possibility to adjust their structures to the application 
needs until the best match is reached is the biggest advantage of ILs in comparison with 
conventional molecular organic solvents (MOSs). The negligible vapor pressure that 
removes their volatility, followed by a threat of ignition or poisoning, the great ability to 
dissolve the most diverse substances, and other features are noted when discussing ILs. 
Therefore, it does not come as a surprise that ILs are used in various branches of both 
industry and science, and new applications of ILs appear frequently [1] [2] [3]. To date, 
more than 240 review articles about ILs have been published. New review papers about 
some significant areas of their use have already appeared this year, for instance, about 
the conversion of carbohydrates into value-added small molecules [4], about the 
thermal, electrochemical and radiolytic stability of ILs [5], about the use of ILs in lithium 
and sodium batteries [6], for CO2/CH4 and H2S/CO2 separations [7], and others.

ILs with dialkyl phosphate anions and, most frequently, with the dimethyl 
phosphate anion (ILs-DMP), can be considered as newcomers in the large family 
of ILs. Even if they have formally been known for more than a half of century 
since the first patent in 1951 [8], ILs-DMP attracted the attention of specialists 
only after the famous publication of the extensive research of the Wasserscheid’s 
group about these materials [9] that have properties noticeably superior to 
other ILs in almost all indicators. ILs-DMP have different cations that, for the 
most part, are 1,3-dialkylimidazolium ions. Unquestionably, the greatest asset of 
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ILs-DMP is their ability to dissolve cellulose, the most 
common biopolymer in nature. Investigations of other 
uses of ILs-DMP started after the highly successful 
dissolution of cellulose. ILs-DMP form a separate group of 
ILs, and ILs with other dialkyl phosphate anions are usually 
included in this group. For all that, no specialized review 
article is available about ILs-DMP that would critically 
evaluate the properties of these prospective materials 
and their possible applications. The present review is 
intended to contribute to filling this shortage.

Preparation
Presently, ILs-DMP are prepared using two methods 

both in industry and in laboratories: by the alkylation of 
amines (phosphines, nitrogen heterocycles) (Scheme 1) 
and by the alkylation of the chloride anion in pre-made 
ILs that have this anion (Scheme 2). 

The alkylation of amines, phosphines or nitrogen 
heterocycles is the first and most widespread type of 
production of ILs-DMP. Alkylation with trimethyl 
phosphate is usually carried out by stirring reagents at 
80–100 °C for 24–48 h under helium, argon or nitrogen 
[9], with a small molar excess of trimethyl phosphate. 
Alkylation with other trialkyl phosphates requires more 
severe conditions. So, reactions between tertiary amines 
and triethyl phosphate come to an end only at 120 °C 
after 24–48 h, while reactions with tributyl phosphate 
demand a temperature 160 °C for 72 h [9]. These 
alkylation reactions are carried out in aprotic solvents, 
such as toluene, ethyl acetate, acetonitrile, and others 
[9] [10]. No unanimous opinion exists among researchers 
about the best solvent for these reactions. The choice of 
the solvent used largely depends on the established 
practice in each specific laboratory. The use of ketones 
(acetone, 2-butanone) as solvents is undesirable in 
synthesizing ILs-DMP due to the staining of the products 
(ILs-DMP) that is very difficult to remove. Even repeated 
treatment of the stained IL-DMP solutions in the solution 
of methanol with charcoal does not eliminate the 
unwanted color. ILs-DMP are remarkably hygroscopic 
materials. Therefore, their protection from contact with 
air moisture is indispensable. Some researchers perform 
the synthesis successfully in tightly closed containers, 
most frequently in a steel cylinder that allows easier 
protection of the reaction mixture from contact with air, 
or use solvents with lower boiling temperatures. Pure 
ILs-DMP can be obtained when exact reaction conditions 
are maintained, and only the solvent and its residue 
should be removed from the reaction mixture after the 
synthesis. This can be done in different ways, and 
probably the best procedure is simple rinsing of the 
product with ethyl acetate for several times, followed by 
vacuum drying of the purified product. The whole 
process is time-consuming. Fortunately, the yields of 
ILs-DMP are high with alkylation (≥ 95%). Notably, if the 
product is colored yellow or brown, it is always possible to 

cleanse it by treating its methanol solution with charcoal 
for several times, until the solution becomes colorless. 
Needless to say, each purification leads to a decrease in 
yield. At the same time, the otherwise good method, the 
alkylation reaction, has a serious limitation: a methyl group 
is introduced in the IL-DMP cation simultaneously with the 
formation of the anion. Fortunately, the presence of the 
methyl group usually is not an obstacle for use of the 
prepared ILs-DMP. The obtaining of a popular IL-DMP 
– 1-butyl-3-methylimidazolium dimethyl phosphate – is 
shown below just for illustration (Scheme 1). 

NNC4H9 NNC4H9 CH3
O=P(OCH3)3

CH3CN / O-P(OCH3)280 0C / 24 h / N2

+
_

Scheme 1. The main preparation method of ILs-DMP (the first 
route). 

According to the second method, ILs-DMP are 
prepared by alkylation with the trimethyl phosphate of 
a pre-made salt, which has the chloride anion in its 
structure, such as ammonium, phosphonium, or nitrogen 
heterocyclic onium chlorides [11] [12]. In fact, it is the 
alkylation of the chloride anion. The mixture of the salt 
and trimethyl phosphate is stirred and heated at 100–
120 °C for that purpose, the end of the gas 
(chloromethane) evaluation signaling for the end of the 
reaction. This anion metathesis reaction greatly increases 
the diversity of the substances to be obtained and removes 
the main constraint of the first method, the compulsory 
introduction of a methyl group in the cations of ILs-DMP, 
thus expanding the range of available ILs-DMP. The 
synthesis of 1-butyl-3-octylimidazolium dimethyl 
phosphate is presented below for the illustration of the 
method (Scheme 2). 

NNC4H9 C8H17 NNC4H9 C8H17
O=P(OCH3)3

O-P(OCH3)2105 0C / 2 h / N2

+
_

Cl
_

+

  CH3-Cl  _

Scheme 2. The alternative preparation method of ILs-DMP (the 
second route).

Analysis
Both traditional and quite specific analytical methods 

are used for the characterization of ILs-DMP. The choice 
of the analyses mainly depends on the utilization needs 
of ILs-DMP.

Traditional methods 
The most widely used analytical method of ILs-DMP 

is the high performance liquid chromatography (HPLC), 
in a tandem with mass spectrometry. Traditional and 
highly advanced instruments are used in these analyses, 
and the method can be considered as both a qualitative 
and quantitative analytical method. Another required 
analysis of ILs-DMP is the determination of the moisture 
content in them using the Karl Fisher titration method, 
taking into account the high hygroscopicity of these 
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materials. Thermogravimetry can be mentioned as the 
third required analysis of ILs-DMP that limits the 
temperature interval for the use of these materials. The 
type of the cation is mainly responsible for the thermal 
stability of ILs-DMP. Heterocyclic imidazolium DMPs are 
highly heat-resistant substances that can be heated up to 
280–340 °C, while aliphatic tetraalkylammonium salts 
decompose as early as at temperatures starting from 
120 °C. Unfortunately, decomposition temperatures of 
ILs-DMP depend on several factors, including the 
heating rate, the type of atmosphere, and even the type 
of an analytical vessel. Therefore, different decomposition 
temperatures appear in the literature for the same IL-
DMP. The fourth commonly used analysis of ILs-DMP is 
the determination of their viscosity. The measurements 
are highly dependent on the presence of a molecular 
liquid (other solvent) in ILs-DMP, which most often is 
water. Viscosities of liquid ILs-DMP cover a wide range 
on the viscosity scale and depend on the measuring 
temperature. Viscosity is usually measured only for 
materials intended for transfer with flow (in tubes, as 
lubricants, etc.) [1] [2] [9].
Specific methods 

The titrimetric quantitative analysis of ILs-DMP can be 
deemed the most important specific analytical method. ILs-
DMP can be easily titrated with perchloric acid in the solution 
of glacial acetic acid [13] [14]. The DMP anion (pKa 1.29 [15]) 
reacts with the strong acid, and the titrimetric analysis at the 
same time allows confirming the purity of the prepared IL-
DMP. It is worth noting that the obtained titration curves are 
of high quality, and this allows easy finding of the equivalence 
point. The content of the basic substance usually is ≥ 99.5% in 
carefully synthesized ILs-DMP. The titrimetric analysis can be 
considered as the most accurate quantitative way of 
characterization of IL-DMP samples. UV-Vis spectroscopy is 
also proposed for the same purpose, although it is less 
popular [16]. The second popular and often used specific 
method is 1H NMR spectroscopy of ILs-DMP, including the 
comparison of integral intensities of resonance signals. The 
integral intensity of six protons of the DMP anion (doublet at 
δ 3.28 ppm) should correspond to the integral intensities of 
protons in the cation of the same IL-DMP, for example, to the 
integral intensities of two protons (C4-H and C5-H) in a 
1,2,3-trisubstituted imidazolium cation. 

The mentioned comparison is particularly important in 
the case when ILs-DMP are prepared by the alkylation of the 
chloride ion with trimethyl phosphate (the second route of 
preparation), as it confirms a complete transformation of the 
chloride ion. Unfortunately, the analysis of 1H NMR spectra 
gives much more inaccurate information than the titrimetric 
analysis. For some ILs-DMP, the polarity is measured using 
solvatochromic dyes, most frequently Nile Red [17]. They are 
not “superpolar” solvents regardless of their ionic structure, 
as their polarity is somewhere between methanol and 
acetonitrile. There is very little available information about the 
toxicity of ILs-DMP. The DMP anion makes the biggest 

contribution to the total toxicity of ILs-DMP [18]. The 
amphiphilic ILs-DMP also show a marked toxicity on biological 
cells and liposomes [19]. A specific simple method has been 
devised for evaluating the toxicity of mixtures of ILs-DMP 
with other ILs, which is dependent on the mixture information 
only [20]. The “green” nature of ILs-DMP is called into question 
after measuring the phytotoxicity of 1-ethyl-3-
methylimidazolium DMP [21]. Densities of some ILs-DMP are 
measured mainly for their application in dissolving biomass 
[22], as well as for understanding the effect of electrostatic 
interactions on the density of ILs [23]. The physicochemical 
properties of trialkylphosphonium cation-based ILs-DMP that 
are less known to the public are described in detail in an 
extensive research, particularly emphasizing their increased 
thermal stability [24].

Application
The excellent dissolution capacity is the most praised 

property of ILs-DMP, and the light dissolution of cellulose is 
the best example of it. The high dissolution ability is based on 
the additional cooperation of the solute with both the cation 
and the anion (DMP ion) of IL-DMP, in distinction from 
molecular liquids (water or organic solvents), where such 
cooperation is impossible. Furthermore, the DMP anion can 
additionally show some complex-formation interaction with 
the solute. All these forms of cooperation promote more 
efficient dissolution of the solutes in ILs-DMP than in other 
ILs, although the exact dissolution mechanism of ILs-DMP has 
not been determined yet.

Investigations in petrochemistry
To date, the use of ILs-DMP in petrochemistry has not 

been sufficiently investigated, despite the distinct advantages 
of these materials in comparison with other ILs. The main 
achievements of applications of some well-known ILs in the 
upstream oil industry have been collected and analyzed in an 
excellent recent review [25]. Desulfurization of fuel oil [26] 
and diesel oil [27] [28] using ILs-DMP should be noted as the 
most successful application examples. The removal of 
dimethyl disulfide via extraction using imidazolium-based 
ILs-DMP has also been very successful, and various extraction 
parameters have been recognized [29]. The aromaticity 
indices and double-bond equivalents were studied to seek a 
simpler approach in identifying the ILs-DMP suitable for the 
desulphurization processes [30]. A total of 168 possible cation 
and anion combinations in ILs, including ILs-DMP, were 
screened with COSMO-RS (Conductor-like Screening Model 
for Real Solvents) for the purpose of desulphurization of 
diesel oil, and good agreement was reached between the 
experimental and calculated data [28]. Asphaltene separation 
with ILs-DMP was investigated for the deasphaltenes process 
using a quantum chemical approach and COSMO-RS [31]. 
Separation of hydrocarbons (crude bitumen, heavy crude oil) 
from materials containing mineral solids has been highly 
successful [32]. The activity coefficients were determined at 
infinitive dilution of alkanes, alkenes, and alkyl benzenes in 
ILs-DMP using gas-liquid chromatography [33]. ILs-DMP have 
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turned out to be superior solvents for the headspace gas 
chromatography of residual solvents with a very low vapor 
pressure, the best of them being 1-(n-butyl)-3-
methylimidazolium DMP [34]. There is no doubt that ILs-DMP 
will find a wide range of applications in all kinds of oil product 
analyses in the near future. 

Dissolution of biopolymers 
The largest number of studies on ILs-DMP are devoted to 

the dissolution of biopolymers, mainly of cellulose, and these 
investigation have been very successful [35] [36] [37], 
including the dissolution of food processing byproducts, such 
as corncobs [38]. Only a few ILs-DMP are capable to dissolve 
cellulose efficiently, the best of them being 1-ethyl-3-
methylimidazolium diethyl phosphate [35]. The anions of ILs 
capable to dissolve cellulose should be good hydrogen bond 
acceptors, and DMP is such an anion. It has been established 
that a cation also plays a significant role in the dissolution 
process, the imidazolium cation being superior to others [36]. 
The ionic liquid-pretreated cellulose was transformed into the 
water-soluble sugar completely [39] [40]. Many attempts have 
been made to find out the precise mechanism of dissolution 
[41] [42] [43], thermodynamics of the dissolution processes 
[44], and the stability of cellulose during the dissolution 
process [45], as well as the viscosity of high-concentration 
cellulose solutions in ILs-DMP [46].

Plant fibers were made from IL-DMP solutions, including 
fibers from the regenerated plant fiber raw material [47], 
purified cellulose fibers [48], and even lignocellulosic materials 
[49]. An efficient process for purifying cellulosic materials has 
been developed [65], which includes the separation and 
removal of hemicellulose [50] [51]. Enhanced production of 
sugars and lignin by means the fractionation of lignocellulosic 
biomass in IL-DMP solutions has been proposed [52]. Recent 
extensive solubility studies of different sugars in ILs-DMP [53] 
have facilitated the biopolymer degradation research.

Dissolution possibilities of other biopolymers in ILs-DMP 
have been studied much less, except for the widespread 
biopolymer chitin, which has been studied quite thoroughly 
[54] [55]. It is worth mentioning that the addition of an aprotic 
diluent (DMSO) has noticeably affected the dissolution 
process [55]. The possibility of selective dissolution of xylan 
– the most important type of hemicellulose – has also been 
described [56]. The authors have also modified the DMP 
anion by substituting one oxygen atom for sulfur and 
selenium, respectively. This alteration has reduced the 
hydrogen bond basicity of the ILs-DMP and has prevented 
the dissolution of cellulose fibers, whereas the less ordered 
xylan was still dissolved. The extraction of lignin from 
lignocellulosic biomass was evaluated with the COSMO-RS 
method, and the effect of cation and anion combination in 
ILs-DMP was compared with that in other ILs [57]. Valuable 
results have been obtained in the experiments of pre-
treatment of lignocellulosic biomass with ILs-DMP, owing to 
their ability to disrupt the extensive hydrogen-bonding 
network. This has facilitated the subsequent enzymatic 
hydrolysis and improved the sugar yield [58] [59]. Highly 

successful dissolution of wool keratin in ILs-DMP was reported 
recently, and fibers obtained from these solutions are used in 
textile industry and medicine [60] [61]. 1-Butyl-3-
methylimidazolium DMP was recognized as the best solvent 
for this purpose. It can completely dissolve 5.0 wt % wool 
keratin at 120 °C. Earlier, the protein stability in ILs-DMP was 
determined using the differential scanning fluorimetry [62]. 
An efficient method for dissolving peanut meal in ILs-DMP 
has also been proposed [63], and several methods have been 
developed for the preparation of peanut protein composite 
fibers from these solutions [64] [65]. Next, the rheological 
properties of concentrated gelatin solutions in some ILs-DMP 
have been examined, and the existence of entanglement 
coupling between gelatin chains in the solutions has been 
discovered [66]. An interesting method has also been 
proposed for the preparation of silkworm fiber material from 
solutions in ILs-DMP [67].

Further modifications of biopolymers in IL-DMP media 
have been successful. Esterified cellulose pulp compositions 
are prepared from available wood pulp sources, and their 
hemicellulose content is distinct from the cellulose esters 
prepared by conventional esterification processes [68]. 
Carboxyl cellulose is prepared by grafting the cellulose 
material with an acid anhydride in ILs-DMP [69]. A number of 
succinic acid-based products have been obtained from 
biomass with ILs-DMP and high-pressure carbon dioxide [70]. 
A method for the preparation of an enzyme cellulase-
immobilizing carrier from the straw treated with ILs-DMP and 
a modifier has been proposed. The method produces no 
pollution, has mild operation conditions and a simple and 
feasible treatment process, and the IL and modifier can be 
completely recovered [71]. A method of silylation of low-
molecular-weight carbohydrates (glucose, mannose and 
lactose) in ILs has been developed for their gas 
chromatographic analysis, and the derivatization reagents 
and reaction conditions have been evaluated for different 
carbohydrates [72]. Ball-milled lignocellulosic biomass was 
dissolved and acetylated in ILs-DMP with or without a co-
solvent in order to find milder dissolution conditions and to 
mitigate possible degradation processes [73]. Further, a 
process of lignin oxidation in ILs-DMP coupled with the 
separation for the production of high added-value aromatic 
aldehydes has been proposed [74]. A method for the 
preparation of sodium lignosulfonate from crop straw has 
been demonstrated [75]. Another useful method relates to 
the production of regenerated biopolymers in the form of 
carbohydrates, such as cellulose, starch, et al., using a solvent 
system that contains ILs-DMP and protic solvents [76]. A 
highly useful experimental investigation about the pre-
treatment of sugarcane bagasse with ILs-DMP to facilitate the 
enzymatic production of bioethanol has been performed [77] 
(see, section 3.5 below).

Other separations
Extractions and separations of other products from the 

main product are less investigated in IL-DMP media. Screening 
of various ILs for the extraction of pentachlorophenol and 
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dichlorodiphenyltrichloroethane from aqueous solutions 
using the COSMO-RS model for the prediction of the 
selectivity of these compounds has been reported [78]. A 
similar approach is used for the prediction of selective 
extraction of all three cresols [79]. ILs-DMP have proved to be 
superior extractants than traditional organic solvents for the 
determination of negligible amounts of phenols [80]. ILs-
DMP are even considered as novel partitioning media for 
water purification devices [81]. A simple and green extraction 
method has been proposed to recover vitamin E from the 
deodorizer distillate with the help of ILs-DMP, and the 
theoretical expectations successfully satisfy the experimental 
results [82]. Recently, ILs-DMP were found to be highly 
valuable as separation agents for terpenes and terpenoids 
[83]. Even a high-value triterpenoid betulinic acid can be 
easily extracted by ILs-DMP after streamlined oxidation of the 
birch bark industrial byproduct [84]. A quite new application 
area for ILs-DMP is in extracting polyester from the fabrics 
that contain polyester and dyes. Unfortunately, no economic 
considerations are presented in the patent [85]. Finally, the 
recovery of thiophene from crude benzene by extraction with 
ILs-DMP has been proposed [86].

Synthetic transformations of organic substances
Transformations of organic substances have been less 

investigated in ILs-DMP than in other ILs. The excellent 
dissolution capacity of ILs-DMP is usually availed of, since it is 
considerably higher than that of traditional organic solvents, 
and sometimes their catalytic action appears in these 
transformations. 

The displacement of poisonous chromium catalysts with 
lanthanide catalysts in the process of the direct conversion of 
glucose to 5-(hydroxymethyl)furfural has been successful in 
ILs-DMP [87]. Notably, a higher reactivity was observed in 
contrast to analogous chromium catalyst systems when the 
hydrophobicity of the imidazolium cation in an IL-DMP was 
increased. Further, a base-free conversion of the aromatic 
aldehyde into 2,5-furandicarboxylic acid was also reported, 
and the possibility of using non-noble metal catalysts in these 
oxidations was demonstrated [88]. The aerobic oxidation of 
5-(hydroxymethyl)furfural over solid ruthenium hydroxide 
catalysts in ILs-DMP at elevated temperatures and pressures 
was also investigated. Unfortunately, both 2,5-furandicarboxylic 
acid and 5-(hydroxymethyl)-2-furancarboxylic acid are 
formed in these oxidation reactions [89]. Nevertheless, these 
reactions serve well for the transformation of renewable 
natural resources (straw, corn stems, etc.) into useful products 
of fine organic synthesis. The production of glycerol carbonate 
from glycerol over selected ammonium and imidazolium-
based ILs-DMP was recently reported. The discovery helps 
solving the problem of unintentional byproduct generation in 
the biodiesel industry [90]. Another possibility was researched 
to convert glycerol in IL-DMP media in its reaction with CO2, 
and it turned out that the “protected glycerol” can serve as a 
useful and cheap solvent [91]. Ionic liquids themselves 
represent an alternative solvent system to absorb CO2 from 
emission sources, demonstrating distinct advantages over 

traditional solvents (e.g., aminoethanol): high chemical 
stability, low corrosion, nearly zero vapor pressure, etc. [92] 
The use of high-stability Rh carbonylation catalysts in the 
production of acetic acid from methanol in IL-DMP media in 
rather harsh reaction conditions (at 170–230 °C and 2.0–4.0 
MPa) has been proposed [93]. Catalytic hydrogenation has 
also been investigated in ILs-DMP over atomically dispersed 
supported metal catalysts, and the results have demonstrated 
a wide range of options for adjusting the catalytic properties 
of the catalysts used [94]. The selective hydrogenation of 
1,3-butadiene to cis- or trans-butene from the crude C4 
steam cracker fraction represents a convincing example of a 
selective reaction using a solid catalyst covered with a ionic 
liquid layer (SCILL) [95]. The behavior of other catalysts – 
copper complexes of acetyl acetone in particular – in ILs-DMP 
and organic solvents was investigated by the spectroscopic 
and electrochemical techniques, and the redox behavior of 
these complexes was described [96]. The interaction between 
ILs-DMP and acetone was also studied, and acetone was 
found to be a strong hydrogen bond acceptor in these media 
[97]. Recently, the gold-catalyzed dimeric cyclization of 
1-phenylpropenes into 2,3-dihydro-1H-indenes was 
examined in ILs-DMP, and the main patterns of these 
cyclizations were described [98]. Even catalyst compositions 
for olefin metathesis in a gas phase were described for ILs-
DMP, and the manufacture of ethene and 1-butene from 
propene was demonstrated [99]. Sometimes, ILs-DMP have 
served as reaction media and catalysts at the same time. This 
double manifestation has been demonstrated for some 
Knoevenagel condensation reactions [10] [12] and even for 
the syntheses of heterocyclic compounds, such as 
1,4-dihydropyridine derivatives [100]. The syntheses of some 
polymers in IL-DMP media have also been described: 
poly(caprolactone) with low polydispersity was prepared by 
the controlled ring-opening polymerization of ε-caprolactone 
[101]; piperazine-based polyimides were prepared in ILs with 
a higher degree of polymerization than in the conventional 
polymerization processes [102]; poly(β-alanine) was 
successfully synthesized in the direct polyamidation reaction 
of β-alanine with triphenyl phosphite as the condensing 
agent [103]; and hybrid-supported metallocene catalysts 
were successfully tested for polyolefin syntheses using these 
catalysts [104].

Enzymatic transformations of organic substances
Despite the well-known instability of enzymes, the 

enzymatic reactions of organic compounds have been very 
successfully induced in IL media, including ILs-DMP. The 
possibility of preparation of isoamyl acetate was demonstrated 
already 10 years ago using the immobilized enzyme Candida 
antarctica lipase B and IL-alcohol biphasic system. The 
recyclability of the IL-enzyme set has been studied extensively, 
and the system was found to be reusable 7 to 10 cycles [105]. 
Later on, the activity of several enzymes was studied in different 
ILs, and the enzymes were found to be most active in ILs-DMP 
[106]. Sometimes, chemically modified cations of ILs-DMP 
improve the activity and stability of enzymes, for example, 
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formate dehydrogenase in the [mmim][DMP] solution [107] 
[108]. ILs-DMP have also served as biocompatible solubilizers 
for hardly water-soluble substances, for example, in the 
stereoselective reduction of ketones using the alcohol 
dehydrogenase from Lactobacillus brevis [109]. Interesting and 
promising are investigations in electroenzymatic syntheses, 
efforts to combine oxidoreductase-catalyzed reactions with 
the electrochemical reactant supply [110]. However, the most 
important is the enzymatic hydrolysis (saccharification) of 
cellulose in ILs-DMP. Different cellulose-containing materials 
have been hydrolyzed in ILs-DMP in this way: bagasse [111], 
chestnut shells [112], barley straw [113], etc. Different methods 
have been used for the separation of glucose from enzymatic 
hydrolysis mixtures, mainly alumina column chromatography 
[114]. A new approach to enzymatic reactions in IL-DMP media 
is the use of purposefully made model enzymes, for example, 
the model cellulase from polybasic carboxylic acid, inorganic 
acid and IL [115], or polybasic carboxylic acid and organic base 
[116]. It is too early to judge about the development prospects 
for these approaches. Admittedly, enzymatic transformations 
are less developed in ILs-DMP than in other ILs.

Use in electrochemistry 
The use of ILs-DMP in electrochemistry is also less 

developed than in other ILs. The information about the 
possibilities of such use can be found mainly in patent 
literature. Printed energy storage devices [117] and printed 
silver oxide batteries [118] are described in detail. Benefits of 
ILs-DMP when used as electrolytes for photovoltic devices are 
praised [119]. These materials are also useful in electric light-
controlling elements [120]. A great success is the application 
of ILs-DMP in cyanide-free copper-zinc electroplating liquids, 
and several recipes have been proposed for non-cyanide 
plating solutions [121] [122]. ILs-DMP have also served as 
composite materials for the preparation of very specific 
electrochromic devices [123]. There is also an innovative 
method of preparation of a heteroatom in-situ doped carbon-
based catalyst for the fuel cell proposed, with flexible and 
changeable doping species of heteroatoms and high doping 
efficiency [124]. 

Other applications
Applications of ILs-DMP in other areas are still fragmentary. 

They have been used in high-temperature environment-
friendly lubricant compositions [125]. They have helped to 
change the interfacial behavior, such as wettability and 
adhesion of surfaces, and the well-known possibility to design 
the necessary structure of ILs has been highly useful in 
developing the very best compositions for concrete surfaces 
[126]. Absorption heat transformers using ILs-DMP together 
with water or methanol as working fluids have been proposed, 
and these systems are superior in comparison with the previous 
ones [127]. Phase diagram data have been obtained for 
aqueous two-phase systems containing ILs-DMP and 
potassium salts [128]. ILs-DMP have been used as entrainers in 
the azeotropic systems of water/ethanol, water/2-propanol, 
and water/tetrahydrofuran [129]. Original information has 
been obtained about the interactions that control the phase 

behavior of aqueous biphasic systems composed of poly 
(ethylene glycol) polymers and ILs-DMP. The adjustable 
structural features of ILs and the influence of the molecular 
weight of the PEG polymer have been discussed [130]. Recently, 
the use of eutectic mixtures of ILs-DMP as absorbents in 
absorption chillers was proposed [131]. The addition of ILs-
DMP to polymer compositions has delayed crystallization and 
lowered the crystallization point of thermoplastic polymers 
[132]. ILs-DMP have helped in producing porous structures 
from synthetic polymers (fibers, sheets, films, coatings, etc.) 
[133]. Liquid layers of ILs-DMP have alleviated the stress 
generated between the substrate and the solid ultra-thin film, 
and the flexibility of films [134] and chemical-mechanical 
properties of tribofilms have been studied in depth [135]. 
Recently, ILs-DMP have helped to accomplish a rather difficult 
task: the fabrication of polyethersulfone flat sheet membranes. 
The obtained membrane morphologies were compared with 
those of the membranes prepared from solutions in DMF and 
were further successfully applied in DNA separations [136].

No matter how diverse the available information about 
ILs-DMP is today, more is yet to come. There is no doubt that 
there will be more pleasant surprises for researchers of these 
materials in the near future.

Conclusions
ILs-DMP are readily available materials with chemical and 

mechanical properties superior to most other ILs. Safe and 
reliable methods have been developed for their qualitative and 
quantitative analyses. Just the first attempts are made in using 
these materials in oil chemistry. Their use is much better 
explored in the dissolution of cellulose and related materials, 
although there is still no credible explanation for their increased 
dissolution capacity. The dissolution of other biopolymers in 
ILs-DMP has also been quite successfully developed, as well as 
different transformations of biopolymers. Other areas of use 
are represented only with some examples. Of course, future 
developments in these areas are open. At the same time, the 
influence of the structure of ILs-DMP on the processes 
performed in their media has not been sufficiently appreciated 
by now. The number of dialkyl phosphate anions is limited. This 
makes it difficult to appreciate the true impact of the anion in 
the examined processes. Investigations in these directions 
might lead to a considerable selectivity increase of ILs-DMP in 
different application processes.
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