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Abstract
In alumina industry, gibbsite (Al(OH)3) precipitation from sodium aluminate solution is 

the foremost step in the production of alumina (Al2O3) from bauxite via the Bayer process. 
Hence, the precipitation of gibbsite has been extensively studied, with focus on kinetic 
modelling of the growth and agglomeration of gibbsite under different batch precipitation 
conditions. However, not much attention has been paid to gibbsite reactivity with quartz, 
given their ubiquitous nature. Stock solutions containing AlCl3 and quartz grains of varying 
pH [5.5, 7.5 and 9] were prepared to establish optimum pH conditions for Al-oxides 
precipitations. The synthesized gibbsite were characterized with FESEM, FTIR and Raman 
spectroscopy. The competing processes of chemical leaching and dissolution-reprecipitation 
between quartz and gibbsite showed that gibbsite is distinctly more crystallized with well-
defined polygonal structure at higher temperature (60ºC) and low silica. The FESEM 
micrographs showed that gibbsite can be synthesized in the pH range selected for this study, 
suggesting gibbsite is synthesizable as long as there are available OH- ions to hydrolyze AlCl3.
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Introduction
Gibbsite (Al(OH)3) is generally formed from the chemical interactions between 

weathered rocks and rainwater in hot and humid zones under high rainfall and high 
leaching rates [1]. The ubiquitous nature of gibbsite in surface formations is generally 
attributed to the action of high intensity weathering processes for a long duration [2]. 
This great abundance of gibbsite in soils and weathering products in tropical 
environments is an indicative factor of advanced stages of weathering that are 
characteristic of developed soils [3]. Gibbsite is even considered the definitive end 
product of weathering [4]. Therefore, the study of hydrous gibbsite mineral at variable 
pressure, pH and temperature conditions is crucial for understanding the dynamic 
processes and circulation of gibbsite/aluminohydroxides bearing waters [5]. Moreover, 
gibbsite precipitation from sodium aluminate solution is the foremost step in the 
production of alumina (Al2O3) from bauxite via the Bayer process [6], hence several 
research has studied gibbsite precipitation with focus on kinetic modeling of the growth 
and agglomeration of gibbsite under different batch precipitation conditions [7] [8] [9]. 
However, only a few studies have focused on developing the relationship between 
gibbsite surface morphology and its growth mechanism [9]. Moreover, related studies 
do not take into consideration that quartz and Al hydr (oxides) (gibbsite) are principal 
components of silicaclastics, and the fact that field observations and experimental 
studies have shown Al oxides form on quartz grains [10] [11].
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The reactivity of quartz and gibbsite can act as a control in 
the growth mechanism of gibbsite. This study is an attempt to 
elucidate the surficial precipitation and growth mechanism of 
gibbsite on quartz. Gibbsite reactivity with quartz will either inhibit 
or catalyze the growth of Al hydr (oxides).This will improve the 
understanding on the controls of gibbsite solubility. Therefore, 
the objective of this study is to determine the gibbsite morphology 
at different pH and temperature conditions as well as to explore 
the impact of quartz dissolution on gibbsite precipitation.

Materials and Methods
Gibbsite was synthesized on quartz substrates (qAl) by the 

slow addition of 0.5molL-1 KOH to 0.8molL-1 AlCl3. Stock solutions 
of the samples with varying pH [5.5, 7.5 and 9] were prepared. 
Afterwards, the stock solutions and their replicates were aged for 
20days at room temperature (≈25°C) and 60°C. The pH was 
monitored daily for the 20 days (Fig. 1) to establish optimum pH 
conditions for Al-hydr (oxide) precipitation. The stock solutions 
were subsequently drained and the residual substrates dehydrated 
in an oven set at 40°C for 5 days. The amount of dissolved silica in 
the drained solution was measured using silica molybdate 
spectrophotometry method (HACH D2800). Fourier transform 
infra-red (FTIR) analysis was used to study quartz reactivity with 
gibbsite by identifying chemical bonds. Morphological variations 
of the synthesized gibbsite were analyzed using field emission 
scanning electron microscopy (FESEM). Pure quartz substrate was 
included in the experiment as a control sample [qAl0]. 

Results
pH and quartz dissolution measurements

The daily pH measurements of the stock solutions show that 
pH declined sharply after 1 day of ageing, as presented in Fig.1. 
For measurements at pH9 (qAl9(60°C)), pH7.5(qAl7.5(60°C)), and pH5.5 
(qAl5.5(60°C),) at 60°, the pH decreased sharply to pH4, pH3 and 
pH3.5, respectively. This decrease is more significant at pH 9. In 
addition, the decline in pH increases with increasing pH. In 
contrast, the pH declined less drastically in stock solutions stored 
at room temperature (qAl5.5, qAl7.5, qAl9) from 5.5, 7.5 and 9 to 6.5, 
6.5 and 3.5, respectively. Nonetheless, the decline was similarly 
more significant at pH9. In stock solutions stored at 60°(qAl5.5(60°C), 
qAl7.5(60°C), qAl9(60°C)), the pH slightly increased after day 3, and then 
becomes steady for the remaining days, In contrast, no increase in 
pH is observed for solutions stored at room temperature. 

Fig 1. Plot showing variation in pH with time

The amount of dissolved silica was measured for each pH 
condition, as shown in Table. 1. As observed, the amount of 
dissolved silica expectedly increased from lower pH to higher 
pH at room temperature, with values of 9.5, 39.3, and 120 
mg/L for qAl5.5, qAl7.5, and qAl9, respectively, given that quartz 
dissolves at low and high pH. At a higher temperature (60°), 
the dissolved silica in the system increased to as high as 
180mg/L at pH 9 (Table. 1).
Table 1. Dissolved silica at different synthesis conditions of gibbsite 

Sample qAl5.5 qAl5.5(60°C) qAl7.5 qAl7.5(60°C) qAl9 qAl9(60°C) qAl0
Dissolved silica 

[mg/L]
9.5 110.9 39.3 111.5 120 180.4 36.9

FTIR characterization

FTIR spectra was obtained for the different synthesis 
conditions, as shown in Fig. 2. The FT-IR peaks at approximately 
775 and 1080cm-1 (Fig.2) denote Si-O quartz bonds, while the 
peak at 1600cm-1 signifiesH-O-H bending of water. Al---O-H 
stretching bond was absent. O-H stretching modes common 
to most phyllosilicates lie in the spectral region of 3400 to 
3750 cm-1. Metal-OH bending modes occur in the 600 to 950 
cm-1 region. Si-O and Al-O stretching modes are found in the 
700 to 1200 cm-1 range. Si-O and Al-O bending modes 
dominate the 150 to 600 cm-1 region. Four bands at 914, 972, 
1021 and 1060 cm-1 correspond to OH-bending vibrations. 
Most probably, the lower frequency band at 914 cm-1 is 
attributed to the Al-O-H group with the least hydrogen 
bonding influence. The bands in the 500 to 650 cm-1 region 
are overlaps of out-of-plane OH bending vibrations and Al-O 
vibrations.

In addition, Fig. 2 shows FTIR absorption bands at 
approximately 3400cm−1 in the IR spectra of qAl5.5, qAl7.5, qAl9, 
qAl5.5(60°C), qAl7.5(60°C), and qAl9(60°C (Fig. 2) associated with 
stretching vibrations of Al–OH groups and inter-layered 
water, which indicate that OH groups are tetrahedrally 
coordinated with Al+3 ions in gibbsite [2][12]. However, as 
observed in the spectra (Fig. 2), the cusp of the absorption 
bands broadens (decreasing% transmittance) with reducing 
pH. Moreover, the intensity of the absorption bands varies, 
where gibbsite samples synthesized at 60°exhibitrelatively 
lower % transmittance compared to their room temperature 
counterpart. 

Fig 2. Overlapping FTIR spectra of the different synthesized gibbsite

Raman analysis of gibbsite coated quartz
Raman measurements in the range of 50-1250 cm-1 reveal 

distinct bands with frequencies and relative intensities. 
Regardless of the similarity in the character of the pure quartz 
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and gibbsite coated quartz substrates spectra, there exists a 
variation in the positions and intensity of the similarly shaped 
peaks for the two phases. The distinctive strong quartz peak 
of pure quartz substrates (q0) at 465cm-1 deviates slightly to 
463cm-1 peak in the spectra of gibbsite coated quartz 
substrates (qAl) as shown in Fig. 3. The shift indicates tensile 
stress denoted by the slight broadening of the peak, invariably 
suggesting reduced crystallinity of the quartz. Other identified 
Raman shifts in the pure quartz include peaks at 352, 400 and 
1137cm-1. The variation in intensity points to the effect 
occlusion. The 465cm-1 peak of pure quartz grains show an 
intensity of 420 cm-1, while that of quartz grains occluded with 
gibbsite are characterized by a relatively lower intensity. The 
decadence of the erstwhile prominent quartz peak indicates 
reduced crystallinity. In addition, quartz is observed to have a 
broad low-frequency Raman band at 199cm-1, which is 
apparent in gibbsite coated quartz substrates. The broadness 
of this band has been attributed to the anharmonic coupling 
of an A1 phonon with a two-phonon (acoustic) mode [13].

Fig 3. Raman spectra of pure quartz (q0) and gibbsite coated quartz 
(qAl)

Morphological characterization
The morphology of the gibbsite coated quartz was 

characterized using FESEM. Observation of samples 
synthesized at room temperature shows that the synthesized 
gibbsite is constituted by well-spaced clustered micrometer 
sized particles, (Fig. 4A) with no tendency to form aggregates. 
This property of not forming aggregates is directly related to 
the free-flowing characteristics of gibbsite. A second observed 
feature is the peculiar morphology of each particle, shown in 
higher magnification in Fig. 4B. Deep desiccation cracks occur 
after the growth of gibbsite, apparently attributed to the 
dehydration of the sample (Fig. 4C). The free-flowing 
precipitated gibbsite is depicted as lettuce shaped terminations 
[14] (Fig. 4D). Each particle is an agglomerate of platy crystals, 
with cubic terminations. It should be noted that the 
precipitated material coats the entire quartz substrate making 
the quartz surface indiscernible. 

Fig 4. A) well separated clusters of synthesized gibbsite attributable 
to its free-flowing characteristic (G) B) distinct lettuce shape: infilling 

of gouges and notches on the quartz surface with agglomerated 
gibbsite clusters C) desiccation cracks D) gibbsite terminations on 

quartz edges

The samples synthesized at 60°C were also characterized. 
The morphology shows protuberances a top the quartz grains. 
The initially dispersed quartz grains become cemented by the 
crystallized gibbsite (Fig. 5A). A closer view (Fig. 5B) shows the 
quartz grains agglomerated by gibbsite. Fig. 5C shows the 
appearance of deeper and more prominent desiccation cracks 
on the gibbsite cement caused by the intensive dehydration 
process. At 60°C, the initial distinct lettuce shaped gibbsite 
crystals are transformed into well-defined hexagonal gibbsite 
crystal growths and prismatic laths as long as 3μm, as shown 
in Fig. 5D. The gibbsite prismatic crystals are arranged in 
overlapping layers.

Fig 5. FESEM micrographs showing A) agglomerations of quartz 
grains B)cementation of quartz by gibbsite C) deeper and more 
prominent desiccation cracks D) highly crystallized polygonal 

gibbsite gibbsite crystals 

The sample with the highest dissolved silica (qAl9(60°C)) was 
further characterized, as shown in Fig. 6. The dissolved silica is 
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leached over the synthesized gibbsite. This makes the gibbsite 
crystals inconspicuous.

Fig 6. FESEM micrograph of qAl9(60°C

Discussion
Effect of pH and temperature

AlCl3 was hydrolyzed on quartz substrates to form 
insoluble colloidal and stable suspensions of aluminum oxides 
confirmed by the FTIR. The pH of the mother liquor controls 
the structure of the aluminum hydroxide precipitate. The 
variation in pH with time can be explained by the following 
mechanism. The trivalent compound [Aluminium chloride] 
basically hydrolyzes in water solution and ionizes to aluminium 
and chloride ions; whilst the water ionizes to hydrogen and 
hydroxide ions as illustrated by Eqs. (1) and (2); making the 
solution strongly acidic. The compounds are denoted with the 
subscript ‘M’. Afterwards, the aluminium ions partially 
combines with the hydroxide ions released from the 
dissociation of water to form aluminium hydroxide (Eq.3), a 
compound which is only slightly soluble and precipitates from 
solution as a whitish solid. This process is catalyzed by heating 
up the solution and adding a base. 

MCl3-⇌ M3+ +3Cl……………… eqn (1)

H2O ⇌ H+ +OH- ……………… …eqn (2)

M3+ +3OH-⇌ M(OH)3……………eqn (3)
As a base is added to the AlCl3 solutions, the OH- ions are 

deplete and neutralize the available H+ ions to form water, 
causing the pH value to rise until the pH of the base being 
added is attained. The further addition of a base has little 
effect, with the pH remaining relatively constant based on the 
excess amount of OH- in the system. Within this range, OH- 

becomes constantly absorbed of by Al cations overtime to 
form oxy-hydroxide species. Thus, the OH- ions are neutralized 
by the trivalent and H+ ions, leading to the decline in pH. 
However, the pH of the null sample (pure quartz) remain 
constant at 12.5 possibly due to the absence of neutralizing 
agents. 

The FESEM micrographs showed that gibbsite can be 
synthesized in the pH range selected for this study. This 
suggests gibbsite can be synthesized as long as there are 
available OH- ions to hydrolyze AlCl3. At room temperature, 
the synthesized gibbsites are basically lettuce shaped 
terminations. However, for stock solutions stored at a higher 
temperature (60°C), the gibbsite becomes more crystallized 
with well-defined polygonal structure. Thus, it can be inferred 
that the synthesis of gibbsite at 60°Cenhances its crystallinity 
without deforming crystal structure. This is consistent with the 
FTIR and Raman analyses, where the hydroxyl bands of 
samples stored at room temperature (25°C) exhibited lower 
%transmittance, due to water molecules locked in their crystal 
structure, compared to those synthesized at 60°C.

Quartz reactivity with Gibbsite
The bulk of quartz is composed of Si-O-Si [siloxane 

bonds] linkages, although the surface terminations consist of 
hydrophilic hydroxyl groups [terminal OH] [15], since the 
low-coordinated metal cations at the quartz surface are able 
to undergo hydrolysis in the presence of the water molecules 
to produce hydroxide layers (surface hydroxyls: -Si-OH) [16], 
as shown in Eq. (3). These hydroxide sites are very reactive, in 
that a proton from the adjacent solutions may be accepted or 
removed from the mineral surface, i.e. the silica surfaces can 
interact with water in two competing processes: physiochemical 
adsorption by hydrogen bonding (protonation) and chemical 
dissolution [17] expressed in Eqs. (4) and (5), respectively.

H2O + ≡Si-O-Si-> 2≡Si-OH………..eqn (3)

≡Si-OH+ H+↔ ≡Si-OH+
2……………..eqn (4)

≡Si-OH+OH-↔Si-O-+H2O………….eqn (5)
The adsorption process causes the oxygen of the water 

molecule to form a H-bond with the hydrogen of the OH 
surface group [OH coordinated to single silicon: Si-OH] as 
shown below in Fig. 7, based on proposed ab initio calculations 
[18]. Conversely, the water molecules are able to interact with 
the surface to cleave the Si-O-Si linkages [siloxane], resulting 
in hydrolyzed products [SiO-], where a proton can be lost from 
the surface OH (deprotonation), usually in a basic solution 
[19][20][21]. Therefore, quartz dissolution is dependent on the 
hydrolysis of surface complexes. Theoretically, the presence of 
trivalent ions like Al3+ on quartz dissolution presents a different 
scenario. This study hypothesizes that the formation of Al 
complexes (Al (OH)3) on the quartz surface, where the trivalent 
cations adsorb to SiO- ligands to form new cationic ligands 
capable of stabilizing the quartz surface by combining with 
the surface Si- OH- and dangling OH-to form Al silicates and 
Al hydroxides, as depicted in Fig. 7.Although quartz is a non-
reactive surface, it can serve as a media for gibbsite synthesis. 
The competing processes of chemical leaching and interfacial 
dissolution-reprecipitation between different materials are 
shown, where gibbsite is less distinct in solutions containing 
high dissolved silica (q Al5.5(60°C)). Al hydr (oxides) coat the 
quartz surface and creates a surficial secondary layer that can 
allow the adsorption and agglomeration of other minerals. 
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Figure 7. Model of quartz dissolution and Al3+ interaction with quartz

Synthesis of gibbsite
As shown in the FESEM images, gibbsite is a more efficient 

coating and cementing material at high temperature, which 
has been attributed to the increased planar form of Al 
hydroxide particles [22]. Thus, Al oxides will be efficient at 
reducing swelling and dispersion of clay as well as initiate a 
greater flocculent effect in a high temperature system, thereby 
improving soil hydraulic conductivity and tensile strength as 
suggested in earlier studies [23] [24]. The distribution of 
gibbsite is dependent on rapid precipitation or hydrolysis of 
AlCl3 or other Al bearing compounds, pH, as well as 
temperature. The formation of gibbsite can retard quartz 
dissolution or resilication to a more stable kaolinite under a 
given H4SiO4 activity, while intense leaching at high 
temperatures in the presence of dissolved silica (H4SiO4) 
activity may enhance the formation of more stable clay 
minerals (kaolinite and smectite).

For industrial gibbsite precipitation, the product specified 
particle size distribution and morphology can be achieved by 
controlling the pH and temperature of gibbsite agglomeration 
and growth processes. At the microscopic level, both gibbsite 
agglomeration and growth occur on the crystal surface. This 
paper provides valuable insights into the growth mechanisms 
of gibbsite on quartz, which have direct influence on the 
particle growth pathways and reaction kinetics. Taking 
advantage of this new insight may bring about improvements 
in the crystallization technology of gibbsite, which is presently 
a sluggish process that requires trains of massive stirred tanks 
[9]. Thus, optimum conditions for synthesizing gibbsites in the 
presence of quartz include near neutral pH solutions at 
approximately 5.5 and temperature of 60ºC, i.e.qAl5.5(60°C).

Conclusion
The competing processes of chemical leaching and 

dissolution-reprecipitation between aluminium hydr (oxides) 
and quartz are shown, where gibbsite is distinctly more 
crystallized at higher temperature and low silica system. Thus, 
dissolved silica inhibits the crystallization of gibbsite minerals. 
Nonetheless, the precipitated Al hydr (oxides) coats the quartz 
surface and creates a surficial secondary layer that can possibly 
allow adsorption and agglomeration of other compounds. 
Gibbsite was precipitated within the pH range of 5 to 9, 
suggesting gibbsite can be synthesized as long as there are 
available OH- ions to hydrolyze AlCl3 and other Al bearing 
compounds.
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